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ABSTRACT The end of growing season (EOS) is an effective indicator of annual vegetation growth. Previous
studies have revealed the dynamics of the EOSwith climate change, while the influence of vegetation growth
in preceding stage and peak of growing season (POS) on the EOS has not been thoroughly documented.
In this study, we used four smoothing methods to obtain EOS dates from the Normalized Difference
Vegetation Index (NDVI) in northeast Inner Mongolia (NIM) between 2001–2017, assessed the differences
in the spatiotemporal variations of the EOS obtained by the four smoothing methods, and then investigated
the impacts of climate factors, summer/ autumn vegetation growth and POS on the EOS. The results showed
that the EOS dates obtained with different smoothing methods were broadly consistent in terms of their
spatial patterns and temporal trends. In terms of climate factors, the EOS was driven mainly by preseason
precipitation for the majority of vegetation types and advanced with increasing precipitation. For the steppe,
both minimum temperature (Tmin) and relative humidity (RHU) played the most important roles in regulating
the variation of EOS which was delayed with an increase in Tmin and reduction in RHU. Furthermore, our
study found an earlier POS and vigorous vegetation growth in summer would jointly advance the steppe
EOS, but these relationships were the opposite of each other in meadow and forest regions. Interestingly,
the EOS of NIM was more related with vegetation growth in the most recent period before the EOS. This
study highlights the importance of ecological processes in the preceding growth stage for understanding the
dynamics of EOS.

INDEX TERMS End of growing season, northeast Inner Mongolia, climate change, peak of growing season,
preceding growth stage of vegetation.

I. INTRODUCTION
Global warming continuously affects the structure and func-
tion of terrestrial ecosystems [1], [2]. As a fundamental
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indicator of ecological processes, land surface vegetation
exerts a feedback on the climate system by regulating
hydrothermal circulation [3] and carbon exchange at the
Earth’s surface [4], [5]. Phenology, i.e., the events that occur
during plant growth and their development rhythm[6], [7],
has become the focus of global change studies due it being
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an essential element of ecosystem models [8]–[10]. Numer-
ous studies have reported that a delayed end of growing
season (EOS) is one of the major determinants of a pro-
longed growing season in the middle and high latitudes of
the Northern Hemisphere [11], [12], which will result in an
increase in the carbon storage of terrestrial ecosystems [13].
However, some researchers have reported that a later EOS
would also lead to the loss of carbon by ecosystem respiration
during autumn warming [14]. This suggests that a thorough
monitoring of the EOS could expand our understanding of the
terrestrial ecosystem carbon cycle.

The Normalized Difference Vegetation Index (NDVI),
which is derived from satellite remote sensing, has been
widely applied in the estimation of land surface phenology in
recent years [15]–[17]. Various methods have been developed
to extract the EOS from the NDVI [18], which generally
involve two main steps: elimination of the noise in NDVI
data and identification of the EOS [19], [20]. In the first
step, several methods, such as the Savitzky–Golay filter [21],
Fourier decomposition [22], and logistic function [23], have
been adopted to eliminate the noise in NDVI data, which
is due to contamination by cloud cover, seasonal snow, and
atmospheric variability. In the next step, the predetermined
thresholds and the inflection point methods are frequently
used to identify the EOS on the NDVI curve [6], [24]. Pre-
vious studies have concluded that the EOS identification
method has a substantial impact on the spatiotemporal pat-
tern of the EOS [19], [25]. However, the impact of noise
smoothing methods on the magnitude and trend of the EOS
remain uncertain. Although some studies have revealed dis-
tinctions among the available smoothing methods [26], [27],
they were mainly based on the use of one-year data to assess
the performance of smoothing methods at test points. Only
a few of them have quantitatively characterized the influ-
ence of various filters on the interannual changes of the
EOS [27].

Most studies have attempted to explain the changes in EOS
through daily mean temperature and precipitation [20], [28].
However, the temperature has experienced faster warm-
ing during the nighttime than daytime over the past five
decades [29], which has an asymmetric effect on phenolog-
ical parameters [30]. In addition, some studies have found
that an increase in Tmax has a greater impact on the start
of growing season (SOS) than Tmin in the Northern Hemi-
sphere, which is mainly caused by the combined effects of
sunshine duration and daytime temperature [2]. However,
Chew et al. [31] proposed that the temperature effects on
the flowering time were mediated mainly by sunshine dura-
tion during spring and summer days, but the nighttime tem-
perature was found to play a pivotal role in temperature
effects as days shorten in autumn in the phenology model.
Yang et al. [32] revealed the asymmetric responses of the
EOS to Tmin and Tmax in the Tibetan Plateau. However, the
contribution of Tmin versus Tmax on the EOS in temper-
ate ecosystems is not well known and how the temperature
and sunshine duration co-determine the EOS also remains

uncertain. Moreover, relative humidity could trigger rainfall
regardless of dry or wet soil conditions [33], which will
induce the stomatal opening of plants and improve photo-
synthetic efficiency [34]. Therefore, it should be included
in assessments to determine if humidity triggers the EOS.
As the main part of the growing season, the variation of
the summer vegetation growth has a residual effect on the
EOS [35], [36]. Previous studies have quantified the sum-
mer vegetation growth as the average NDVI of summer
and found that the summer vegetation growth increases the
cost of soil water overconsumption which then advances the
EOS in the Tibetan Plateau [35]. In contrast, the summer
vegetation growth could delay the EOS in the Yellow River
Basin, because the increasing precipitation induced by veg-
etation activity is sufficient to offset enhanced evapotran-
spiration [36]. These conflicting results imply the complex
responses of biomes under different climate conditions, and
none of these studies quantified the relative importance of the
vegetation growth in each preceding month in determining
the EOS. Furthermore, the peak of growing season (POS) of
plant activity, referring to the timing of the highest degree of
photosynthetic capacity, directly affects carbon uptake and
water consumption [37]. Evidence from several studies has
noted that the POS has shifted towards spring throughout the
majority of the Northern Hemisphere mid-latitudes [12] and
the earlier occurrence of POS results in vigorous vegetation
activity through enhanced carbon assimilation early in the
growing season [38], [39]. Yet, little is known about the
impact of change in the POS on the EOS of different biome
types.

Northeast Inner Mongolia (NIM) is located in a climate
transitional zone, including a range of terrestrial ecosys-
tems along the moisture gradient from semi-arid steppe and
semi-humid forest, and contains a cropland region. This
region contains one of the world’s four largest natural pas-
tures and the important forest area of the Mongolian Plateau,
which extends over the Greater Khingan Mountains, with a
low intensity of human disturbance [40]. The extensive diver-
sity of vegetation and highly vulnerable ecosystems in the
region, especially their phenological shifts, are very sensitive
to global warming [41]. Consequently, it is an ideal region
for investigating the response of EOS variations to climate
and the preceding growth stage of vegetation. The main
objectives of our study were to: (i) assess the influence of
different NDVI smoothingmethods on interannual changes in
the EOS; (ii) investigate how the EOS changed over the NIM
from 2001 to 2017; (iii) systematically analyze the effects
of multiple preseason climate factors on the EOS variation;
and (iv) explore the impact of the preceding growth stage
of vegetation before the EOS on the interannual variation of
the EOS, especially for different plant functional types. The
results of this study improve our understanding of how the
multiple climate factors and the preceding growth stage of
vegetation jointly affect the EOS in temperate ecosystems.
It would be useful to consider these mechanisms in future
carbon cycle models.
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II. MATERIALS AND METHODS
A. STUDY AREA
The NIM region extends from approximately 47◦05′

−53◦20′ N and 115◦31′ −126◦04′ E, covering a total area
of about 2.53 × 105 km2. The elevation of NIM ranges
from 167 m in the east to 1,675 m in the central mountains.
The annual total precipitation varies widely from 195 mm in
the west to 510 mm in the east, with most rainfall received
in June to August. The vegetation across the NIM exhibits
an extensive natural diversity along with precipitation and
topography gradients, and can be divided into four major
types: steppe, meadow, forest, and cropland (Fig. 1). The
steppe mainly occurs in western parts of NIM, with an annual
mean temperature range of −3-0 ◦C. Forest is widely dis-
tributed in the Greater Khingan Mountains across the central
part of the study area, with an annual mean temperature range
of−5 to−2 ◦C. The transition zone between steppe and forest
mainly contains meadows. Cropland areas are spread across
the eastern part of NIM and are scattered among mountains
toward the west, with an annual mean temperature range
of 0-2 ◦C.

FIGURE 1. Geographic location, distribution of elevation, vegetation
types, and meteorological stations of northeast Inner Mongolia (NIM).

B. DATASETS
Moderate-resolution Imaging Spectro-radiometer (MODIS)
NDVI datasets spanning the period from 2001–2017 were
used to retrieve the land surface phenology metrics across
the study area. The 16-day maximum-value composite
NDVI data (MOD13Q1) at a spatial resolution of 250 km
were pre-processed and released by the Level-1 and
Atmosphere Archive and Distribution System (LAADS)
of the National Aeronautics and Space Administration
(NASA) (http://ladsweb.nascom.nasa.gov/). We further pro-
cessed the NDVI data, i.e., mosaicking image scenes,
converting the geographic coordinate system, and clip-
ping by boundaries. Climate records for the period of
2001–2017 were obtained from the China Meteorolog-
ical Data Service Center of the China Meteorological

Administration (http://cdc.cma.gov.cn). The climatic datasets
were collected from nine meteorological stations (Fig. 1)
and then spatial interpolation data was obtained using the
Kriging method [42], including the daily minimum temper-
ature (Tmin), daily maximum temperature (Tmax), sunshine
duration (SSD), relative humidity (RHU), and precipitation.
The vegetation types were obtained from a vegetation map
of Inner Mongolia, with a scale of 1:1000000. The data
was collected in 2000 and was further grouped into steppe,
meadow, forest, and cropland. Previous studies have shown
that the cropland area has increased substantially in Northeast
InnerMongolia since 2000 [43]. Hence, the range of cropland
in this study was updated based on the 2010 MODIS Land
Cover Type Product (MCD12C1), and the remaining regions
retained their original properties.

C. DETERMINATION OF THE PHENOLOGY PARAMETERS
FROM THE NDVI
Original NDVI data is usually affected by residual noise
despite being processed by the standard maximum value
compositing (MVC) technique [44]. Therefore, we adopted
the harmonic analysis of time series (HANTS), asymmetri-
cal Gaussian function (AG), double logistic function model
(DL), and Savitzky Golay (SG) filtering methods to smooth
the NDVI time-series data before identifying the EOS dates
(Table S1). Furthermore, we applied the cumulative NDVI
based logistic regression curve method to determine the EOS
from smoothed NDVI data (Table S2). This method was
developed by Hou et al. [45] and is widely used for retriev-
ing phenological phases. First, we calculated the cumulative
NDVI based on the smoothed NDVI data and then fitted
the cumulative NDVI to interpolate daily NDVI values using
the logistic model. Second, we obtained the change rate of
fitted logistic NDVI curves. Finally, we specified the EOS
as the time when the change in the curvature rate reached
its minimum value (Fig. S1b). The summer average NDVI
(June, July, and August) and September NDVI represented
the preceding growth stage of vegetation and was used to
identify the impact on the EOS. In addition, we used the sixth-
degree polynomial function [46] to interpolate daily NDVI
from the 16-day NDVI, and then the timing of the occurrence
of maximum NDVI in summer was defined as the POS date
(Fig. S1a).

D. ANALYSES
The Theil-Sen median trend analysis and Mann-Kendall test
method [47] were used to assess the spatial characteristics
of EOS trends in each pixel. To further investigate the dif-
ferences in EOS trends among different vegetation types,
we calculated the spatial average EOS of each vegetation
type to examine the overall trends. In addition, to under-
stand the effects of the potential driving factors on the EOS,
Pearson correlation coefficients [55] were calculated and
a t-test was performed to assess the relationships between
the EOS and both preseason climate factors and the pre-
ceding growth stages of vegetation (June, July, August, and

VOLUME 8, 2020 221527



W. Rina et al.: Multi-Climate Factors and the Preceding Growth Stage

FIGURE 2. The spatial distribution of the multiyear averaged Normalized Difference Vegetation Index (NDVI). The four enlarged
panels show the curves smoothed by four different methods (harmonic analysis of time series (HANTS), asymmetric Gaussian (AG)
function, double logistic (DL) function, Savitzky-Golay (SG) filter) and the corresponding end of growing season (EOS). The sample
pixels are in steppe (top left), meadow (bottom left), forest (top right), and cropland (bottom right).

September NDVI, summer average NDVI and POS). Here,
based on the multiyear (2001–2017) spatial average EOS
for each vegetation type, we determined that the last day of
September could be regarded as the start of the preseason in
the steppe, meadow, and cropland regions, while the last day
inmid-October was considered to be the start of the preseason
in the forest area. Furthermore, we used stepped intervals
of 10 days to calculate the mean Tmin for each of 15 periods,
with durations ranging from 10–150 days (i.e., 10, 20, 30, . . . .,
150) for each pixel. The same procedure was executed for
the other climate factors. Hence, the preseason length of each
climate factor was defined as the period which had the largest
correlation coefficient for the relationship with the EOS.

III. RESULTS
A. ANALYSIS OF THE DIFFERENT SMOOTHING
METHODS TO EXTRACT THE EOS
The performance of four smoothing methods and the corre-
sponding EOS at four sample sites selected from 2006 are
displayed in Fig 2, in which each inset represents a vegeta-
tion type. It was observed that all denoising methods were
effective for smoothing the time series of NDVI data. Com-
paring four EOS dates obtained using the different smoothing
methods, we found that the dates obtained with AG, DL,
and SG were extremely similar (within 3 days) for most
biomes, and were even in the same day in the forest region.
Moreover, the EOS date obtained with HANTS was usually
earlier than the date obtained with the other three methods,
which was four days earlier in most of the forest area. The
spatial distribution of the multiyear average EOS, which was
derived from the four filtered NDVI values during the period
of 2001–2017 is shown in Fig. 3. The spatial patterns of the
four EOS dates were extremely consistent with each other.
The earliest EOS dates were located in the southwest and east
of the study area, whereas the later EOS dates were mainly

identified in the central mountain region. We calculated the
standard deviation (SD) of the EOS obtained with the four
smoothing methods (Fig. 3f). Nearly 90% of the total pixels
had SDs of less than 4 days, while only 10% of all pixels had
SDs of more than 4 days, of which 2% of pixels had SDs of
more than 6 days. In contrast, the SDs were smaller in the
steppe area than in the other biomes (Fig. S2).

A comparison of the multiyear average EOS for each
biome at regional scales (Fig. 4a) revealed a good resem-
blance among AG, DL and SG method. However, the EOS
obtained from the NDVI smoothed by HANTS was approxi-
mately 5 days earlier than the value obtained using the other
methods for the entire study area and the different vegetation
types (Fig. 4a). Fig 4b-f shows the interannual variations of
the EOS estimated from the different smoothed NDVI data
and their mean values during 2001–2017 for different plant
functional types. The curves of interannual changes of the
EOS based on the different methods were in good agreement
with each other (Fig. 4b) and the slope values were almost
the same across the whole study area (Table S3). Consistent
results were obtained for all vegetation types (Fig. 4c-f).
Overall, the EOS results obtained using the different methods
displayed similar characteristics, and therefore, we used the
average value of the four EOS dates in the following analysis.

B. SPATIAL DIFFERENCES AND TEMPORAL TRENDS
The spatial distribution of multiyear average EOS is shown
in Fig. 3e. The EOS was in the range of days 240–300 (late
August to late October). The earlier EOS dates, ranging from
days 240 to 270, were mainly located in the southwestern and
eastern parts of NIM. The central and northern regions had
EOS dates ranging from days 270–300. In addition, we found
that the spatial average EOS date in NIM was around day
271 ± 7 (late September) (Fig. 4a). In terms of plant func-
tional types, the earliest EOS dates were observed in steppe
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FIGURE 3. The spatial pattern of EOS in the study area obtained with the four smoothing methods and their average EOS: HANTS (a),
AG function (b), DL (c), SG filter (d), mean (e), and its standard deviation (f) for the four EOS dates. The top left inset shows the
percentage of each interval in which the value was indicated by the map legend.

(day 262± 14) and cropland (day 266± 10), while later EOS
dates were found in meadows (day 273 ± 9) and forest (day
278 ± 6). Fig 4b-f shows the interannual changes of EOS

during the period of 2001–2017, and clearly shows discrep-
ancies in the EOS trends for different biomes. At the regional
level, the EOS across the NIM displayed no significant

VOLUME 8, 2020 221529



W. Rina et al.: Multi-Climate Factors and the Preceding Growth Stage

FIGURE 4. Average dates and standard deviation of EOS for the four smoothing methods and their mean (a). The interannual variations of EOS using
the four smoothing methods (HANTS, AG, DL and SG) and mean EOS from 2001–2017 for entire study area (b), steppe (c), meadow (d), forest (e), and
cropland (f).

advancing trend, with a rate of 0.1 d·a−1 (P = 0.76)
(Fig. 4b). The EOS of steppe and cropland experienced
advancing trends at rates of 0.33 d·a−1 (P = 0.24) and
0.42 d·a−1 (P = 0.04), respectively (Fig. 4c and f). The EOS
of forest biome was delayed by 0.14 d·a−1 (Fig. 4e), but the
delaying trendwas not significant (P= 0.53). For themeadow
ecosystem, there was no obvious trend (Sen’s slope =
-0.02 P = 0.95) in the EOS (Fig. 4d). We mapped the spatial
distributions of EOS trends for the study period (Fig. 5). Over
the study area, an advance of the EOS was observed across
more than 63.7% of the total pixels, although it was signifi-
cant in only 5.42% of the pixels, and the advance was more
pronounced in the east of the Greater KhinganMountains and
western steppe area of NIM. In contrast, a delay in the EOS
was observed in 36.3% of all pixels (significant in 3.86% of
pixels), which were generally concentrated in the northern
Greater Khingan Mountains.

C. RESPONSES OF THE EOS TO POTENTIAL
DRIVING FACTORS
1) RESPONSES OF THE EOS TO MULTIPLE
CLIMATE FACTORS
At the regional scale, both Tmin (R= 0.27, p> 0.05) and Tmax
(R = 0.41, P > 0.05) exhibited a positive influence on the
EOS of the NIM, which occurred approximately at preseason
day 80 (Fig. S3). In addition, the correlation between SSD and
EOS was in general similar to the corresponding correlations
found for Tmin and Tmax (Fig. S3), implying that a longer
SSD was conducive to vegetation growth in autumn. How-
ever, the preseason length of SSD which had the strongest
effect on the EOS was generally longer than the preseason
length of Tmin and Tmax. In contrast, negative relationships
between the EOS and both RHU (R = −0.46) and precip-
itation (R = −0.62) were observed (Fig. S3). These results
implied that the EOS of NIM advanced under increased

FIGURE 5. The trend of multimethod averaged EOS in NIM during
2001–2017 (the top left (upper) inset shows the pixels significant at p <

0.05, the top left (lower) inset shows the percentage of each interval that
is indicated on the map).

RHU and precipitation. The strongest impacts of RHU and
precipitation on the EOS mainly occurred in the short-term,
within 10 days of the preseason. Biome-specific correlations
between the EOS and preseason climate factors are presented
in Fig. 6. It can be clearly seen that the relationship between
the EOS and Tmin varied substantially among the plant func-
tional types. The EOS of steppe (R = 0.46, P > 0.05) and
meadow (R= 0.26, P> 0.05) were positively correlated with
Tmin. In contrast, a negative correlation was found in forest
(R = −0.38, P > 0.05) and cropland (R = −0.44, P > 0.05)
regions. In general, the EOS for steppe and meadow would
be delayed with a Tmin increase, but it would advance with
a Tmin increase in the forest and cropland biomes. It was
apparent that Tmax had a positive impact in most subregions,
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FIGURE 6. Correlation coefficients between the annual changes of the
EOS with minimum temperature (Tmin), maximum temperature (Tmax),
sunshine duration (SSD), relative humidity (RHU), and precipitation in
NIM from 2001 to 2017. ∗ and ∗∗ indicate significance at p < 0.05 and
p < 0.01, respectively.

except for the cropland (R = −0.41, P > 0.05) area. The
forest EOS was significantly related to Tmax (R = 0.54,
P < 0.05). This indicates that a rising Tmax was beneficial
to vegetation growth for most vegetation types, especially in
the forest region, but it restricted the growth of cropland in
autumn. Furthermore, the EOS of all biomes were positively
correlated with SSD, particularly for the forest (R= 0.53, P<

0.05) and cropland (R = 0.51, P < 0.05) areas. However, the
EOS dates in all subregions were negatively correlated with
RHU and precipitation.

To determine the effects of climate factors on the EOS
at the pixel scale, the correlation coefficients between
the EOS and preseason climate factors were calculated
(Fig. 7a-f). Across the study area, the EOS was positively
correlated with Tmin in 48.59% of the pixels in the total area
(significant in 11.96% of pixels), and there was a negative
correlation in 51.41% of pixels (significant in 12.91% of
pixels). The EOS was positively correlated with Tmax in most
pixels (74.17%), with the correlation being significant for
21.66% of total pixels (Fig. 7f). In most pixels (74.08%)
there was a positive correlation between SSD and the EOS
throughout the NIM, with 24.78% being significant. In the
remaining pixels, which represented 25.92% of the total
areas, there was a negative correlation (Fig. 7f). Compared
with the SSD, the opposite pattern was observed in the rela-
tionship between the EOS and both RHU and precipitation.
Specifically, the EOS across NIM was negatively correlated
with RHU and precipitation in 82.77% and 84.03% of all
pixels, of which 31.52% and 40.21% were significant at the
0.05 level, respectively (Fig. 7f). Additionally, the EOS of
NIM was most closely associated with Tmin and Tmax during
the period of days 10–110, and themid-value occurred at days
60 and 80, respectively (Fig. S4). In contrast, the preseason
durations of SSD, RHU, and precipitation were concentrated
over shorter time scales, with the mid-values mostly occur-
ring at about day 30 (Fig. S4). In line with the across-biome
results reported above, more than 70% of pixels had a positive
correlation between the EOS and Tmax for each biome, except
cropland (Fig. 7b-f). The relationship between the EOS of

cropland and Tmax was ambiguous, with positive and negative
correlations in 44.96% and 55.04% of all pixels, respectively.
There was a positive correlation between SSD and the EOS
in more than 63% of each biome, and around 30% of these
positive correlations were significant at the 0.05 level, except
for the steppe (significant in 7.35%) and meadow (significant
in 16.25%) regions (Fig. 7f). Consistent results were also
found for RHU and precipitation, with a negative correla-
tion between the EOS with RHU and precipitation observed
at more than 68% of pixels for each vegetation type, and
most were significant in more than 20% of pixels (Fig. 7f).
Compared with the factors mentioned above, there were large
differences in the effects of Tmin on the EOS among the
different vegetation types. For steppe, more than 86% of the
pixels had a positive correlation, and about 30% of the pixels
were significant at the 0.05 level (Fig. 7f). With regard to
forest and cropland areas, negative correlations between the
EOS and Tmin were observed in 63.81% (forest) and 75.31%
(cropland) of pixels (Fig. 7f). The meadow EOS was posi-
tively correlated with Tmin in 48.97% of pixels and negatively
correlated with Tmin in 51.03% of pixels, although the corre-
lation was not significant in most pixels (Fig. 7f). Overall,
the EOS of NIM was most strongly related to precipitation
(Fig. 7a, Fig. S5), with an average correlation coefficient of
−0.33, suggesting that the precipitation was the dominant
climate factor controlling the variation of EOS. Consistent
results were also found for meadow, forest, and cropland,
with average correlation coefficients of −0.36, −0.44 and
−0.33, respectively (Fig. 7c-e, Fig. S5). For steppe, both
Tmin and RHU were the driving climate factors that best
explained the trend of EOS, with average correlation coef-
ficients of 0.33 and −0.33, respectively (Fig. 7b, Fig. S5).
Although the other climatic variables were selected in rela-
tively few pixels, their influences on the EOS could not be
ignored.

2) RESPONSES OF THE EOS TO VEGETATION
GROWTH AND THE POS
The spatial patterns of correlation between the EOS and
both summer average NDVI and POS are shown in Fig. 8.
We found that a positive correlation between the EOS and
summer average NDVI was distributed in the northern and
northeastern parts of NIM (52.17% of total pixels), while
a negative correlation was identified in 47.83% of pixels
(Fig. 8a). The spatial distribution of the relationship between
the EOS and POS had the opposite sign to the relationship
between summer average NDVI and EOS in most pixels
(Fig. 8b). The EOS was negatively correlated with the POS
in 51.53% of pixels and positively correlated with the POS
in 48.47% of pixels in the NIM.

For steppe and cropland regions, the EOS was mainly
negatively correlated with summer average NDVI in 77.03%
and 63.47% of their total areas, with average correlation
coefficients of −0.15 and −0.11, respectively (Fig. 8c, d).
In contrast, the EOS was positively correlated with the POS
in 78.39% and 65.46% of pixels, with average correlation
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FIGURE 7. The frequency distribution of correlation coefficients between the EOS and climate factors: entire study area (a), steppe (b), meadow (c),
forest (d), and cropland (e), and the percentages of correlation coefficients (f: bars above zero line represent percentage of positive correlations, and
the underneath show negative percentages, colored sections show the percentage of significant correlations at p < 0.05).

coefficients of 0.18 and 0.13, respectively. This suggests that
the EOS of steppe and cropland would advance with an
increase in the summer average NDVI and an advance in the
POS in most pixels. However, the summer average NDVI
had a positive (67.00% of pixels) impact on the forest EOS,
with an average correlation coefficient of 0.13, and the POS
had a negative (64.75% of pixels) impact on the forest EOS,
with an average correlation coefficient of −0.12 (Fig.8c, d).
This indicated that the forest EOS would be delayed with
the growth of vegetation in summer and an advanced POS.
In addition, the response of meadow EOS on the summer
average NDVI and POS were ambiguous (Fig. 8c, d), with
a positive/negative correlation of the EOS with summer aver-
age NDVI of 58.39% / 41.61%, respectively. The meadow
EOS was positively correlated with the POS in 40.58% of
pixels and negatively correlated in 59.42% of pixels. Fur-
thermore, we obtained the relationship between the EOS and
NDVI for each summer month and September. For the entire
study area, we found that the EOS was negatively correlated
with the NDVI in June and July, while it was positively cor-
related with the NDVI in August and September (Fig. S6a).
A similar pattern was observed in steppe and cropland regions
(Fig. S6b, e). This implied that the vegetation activity in
early summer would restrict the growth of autumn vegetation,
while vegetation activity in late summer and early autumn
would delay the vegetation degradation. For the meadow and
forest areas, the NDVI had a positive effect on the EOS in
all months, especially in August and September (Fig. S6c, d),
indicating that the NDVI in all periods prior to leaf senes-
cence was sufficient to promote vegetation growth in autumn
and delay the EOS.

IV. DISCUSSION
A. RESPONSES OF DIFFERENT SMOOTHING METHODS
ON THE EXTRACTION OF THE EOS
Numerous studies have concluded that all smoothingmethods
can effectively remove the residual noise in the NDVI [18],
but the different methods produce differences in the descrip-
tion of overall trend of vegetation dynamics [48] and in the
retention of details of seasonality signals [49]. In this study,
we adopted the four frequently-used methods (HANTS, AG,
DL, and SG) to smooth the time series of NDVI data and then
extracted the EOS in NIM during the period of 2001–2017.
The results of the comparison showed that the spatial distri-
butions of the EOS retrieved from the different smoothing
methods displayed similar patterns and the SDs were mainly
within 6 days (Fig. 3f). This was inconsistent with previous
studies in which large disparities (range of days 20–50) were
reported in the SOS and length of growing season (LOS) and
that the SG filter was more reliable than the AG and DL for
temperate grassland [27]. Several researchers have reported
that the effects of smoothing methods on the estimation of
land surface phenology vary greatly for different levels of
vegetation coverage [24], [26]. In contrast, our study found
that the EOS dates using different smoothing methods were
similar at sample sites with different vegetation types (Fig. 2).
The average SDs were relatively smaller in steppe (2 days)
than the other biomes (4 days) at the pixel scale (Fig. S2).
The differences in errors among the vegetation types may
be caused by the signal to noise ratio of the NDVI time
series, which is proportional to the confidence level for clear
sky labeling [50]. Furthermore, Cong et al. [28] consid-
ered that the interannual changes of the EOS were mainly
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FIGURE 8. Spatial pattern of the correlation coefficients of the EOS to summer NDVI (a), and peak of growing season (POS) (b), (The
red (negative) and blue (positive) pixels in the top-left (upper) inset indicate significance at p < 0.05; the top left inset (lower) shows
the percentage of each interval that is indicated on the map legend). The frequency distribution of the correlation coefficients
between the EOS and summer average NDVI (c) and POS (d) for different vegetation types, (P and N represent the positive and
negative correlations, respectively).

dependent on the smoothing method rather than the identi-
fication method, and found an obvious distinction between
the Tibetan Plateau EOS trends based on the cubic spline
and HANTS functions. Liu and Zhan [51] also found that the
DL function was better than the SG filter for describing the
overall trend of the SOS. However, our results showed that the
interannual variations of the EOS using various filter were
in good agreement with each other for all biomes (Fig. 4),
indicating that the use of different smoothing methods had
little impact on the EOS trend in NIM. The inconsistency in
the results of the different studies may be attributed to the
differences in the methodology of phenology extraction [19],
land surface conditions [28], and data resolution [52], [53].

B. SPATIAL DIFFERENCES AND TEMPORAL TRENDS
Our results showed that the EOS ranged between days
240 and 300 (Fig. 3e), which was in agreement with pre-
vious studies that found the EOS mainly occurred in late-
August to mid-October in the Mongolian Plateau [16] and
temperate China [19], including NIM. Despite there being no
clear patterns along the latitudinal or longitudinal gradients,

the EOS of NIM displayed a spatial heterogeneity among the
different vegetation types, with the forest EOS always being
later than in steppe and meadow regions. This discrepancy
may be attributed to plant functional types [54]. For exam-
ple, the forest vegetation was more cold-resistant than the
grassland as the temperature fell in autumn, therefore, leaf
senescence occurred later in forest than in steppe andmeadow
areas [15].

In addition, this study identified a slight but non-significant
advancing trend in the EOS of NIM during the past 17 years
(Fig. 4). The absence of an EOS tendency was mainly due
to the offsetting effect caused by spatial variations [28], [35].
Our study observed that the forest EOS was delayed with a
rate of 0.14 d·a−1. The delaying trend was consistent with
previous results reported in forests in the eastern United
States and semi-arid mountains of China, but its magnitude
was different between arid and humid areas [56]–[58]. In con-
trast, the EOS of steppe displayed an advanced trend at a rate
of 0.33 d·a−1, and the meadow EOS had a slightly earlier
trend (0.02 d·a−1). This advancing trend of grassland was
consistent with previous studies. For example, Bao et al. [16]
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investigated the EOS of the Mongolian Plateau over a long
observation period and found an earlier trend in grassland
areas. Liu et al. [19] studied the variation of the EOS from
1982–2011 in temperate China and observed an advancing
trend (0.02 ± 0.01 d·a−1) in grassland areas of Inner Mon-
golia. However, a delaying trend of the EOS was reported in
some other studies. Gong et al. [59] found that the EOS over
the entire Inner Mongolia grassland during 2002–2014 was
delayed at a rate of 0.51 d·a−1. Yang et al. [60] found that
the EOS of temperate grassland in China was delayed by
0.08 d·a−1 during 1982–2010. The different rates of change
and diverse EOS trends in grassland might be due to the
different types of grassland, target periods, data resolution,
and extraction methods.

C. RESPONSES OF THE EOS TO POTENTIAL
DRIVING FACTORS
Previous studies have reported differential warming in recent
decades in terms of Tmin and Tmax, which had asymmetric
effects on the land surface phenology [2], [15], [30]. How-
ever, we found an equal effect of Tmin and Tmax on the EOS
for steppe and meadow areas, with an increase in both Tmin
and Tmax delaying the EOS (Fig. 6). These positive correla-
tions may be partly due to the fact that a higher Tmin could
eliminate the risk of frost damage in autumn and slow the
degradation of chlorophyll in plants [32]. An increase in Tmax
could enhance vegetation photosynthesis with the decline in
temperature in autumn and postpone the EOS date [28], [61].
Although Tmin is considered to be strongly related to the fre-
quency of chilling damage in the boreal ecosystem [62], [63],
our study identified a negative correlation between Tmin
and the EOS of the forest and cropland biomes (Fig. 6).
An increased nighttime temperature would strengthen leaf
respiration, consume large amounts of leaf carbohydrates,
and then accelerate the development of autumn leaf col-
oration [30], [64]. This mechanism could partly explain the
negative impact of Tmin on the EOS. It should be noted that
the cropland EOSwas negatively correlated with Tmax, which
was mainly ascribed to the fact that a higher Tmax may lead
to decreasing the water content in the soil and restraining the
vegetation growth in the irrigated agricultural area [65]. Sig-
nificantly, there were great uncertainties in the relationship
between the cropland EOS and climate factors due to this
particular region being extraordinarily vulnerable to human
management, such as changes in crop variety, irrigation, and
fertilizers [66]. In most boreal and wet temperate regions,
the vegetation growth was more sensitive to the photoperiod
due to the seasonal temperature varying strongly [67]. Our
results showed that the SSD had a positive effect on EOS for
all biomes (Fig. 6). This was mainly because a longer SSD
would stimulate the photosynthesis capacity of plants and
thereby slow the speed of vegetation degradation [35], [68].
Additionally, we found that the EOS was negatively corre-
lated with both RHU and precipitation for all biomes. This
phenomenon may be explained by the fact that increasing
precipitation was associated with lower radiation [15], and

a higher RHU could result in a higher risk of freezing injury
with the drop in autumn temperature in colder areas, subse-
quently promoting leaf senescence in autumn [60], [69].

Plants of each life-cycle rely heavily on their previous
growth stage [37], [70]. For the steppe, we found that summer
vegetation growth had a negative effect on the EOS (Fig. 8c),
which was in accordance with the previous study in the
alpine vegetation of the Tibetan Plateau [35]. This may be
caused by the vigorous vegetation growth in summer being
accompanied by the over consumption of soil water, thus,
resulting in an earlier EOS for water-limited ecosystem [71].
The steppe vegetation grew fastest in June and needed more
water at this time [72], and therefore the EOS of steppe was
most strongly related to the NDVI in June (Fig. S6b). Inter-
estingly, the forest EOS was positively correlated with the
NDVI in months prior to the EOS and most strongly related
to September NDVI (Fig. S6d). This suggests that vegetation
growth in all periods prior to leaf senescence would delay the
EOS, especially in the autumn. Compared with herbaceous
plants, woody plants with developed roots are habituated to
uptake deeper soil water [20], resulting in less dependence
on land surface water variability. Additionally, woody plants
are likely to be more drought resistant than herbaceous plants
due to their ability to store water [20]. Additionally, strong
preseason vegetation activity indicates an improvement in
carbon sequestration [13]. As a result, vegetation growth in
the preceding stage would slow the rate of leaf senescence
and postpone the forest EOS. Furthermore, with the decline in
autumn temperature, the stronger photosynthetic capacity of
vegetation would have a heat preservation function, keeping
the land surface temperature relatively stable in autumn [73].
This phenomenon could explain the strongest impact of
NDVI on the forest EOS being strongest in September. Cong
et al. [28] demonstrated that plants with a shorter grow-
ing season have lower plasticity in regulating the length of
growing season and have a more conservative strategy. Thus,
an earlier or later peak season activity is accompanied by
advanced or delayed degradation of vegetation with a shorter
length of growing season [74]. These results may help to
explain the positive correlation between the POS and EOS
in steppe and cropland areas (Fig. 8d). Nevertheless, there
were negative effects of the POS on forest and meadow EOS,
which could be attributed to several factors. First, the forest
andmeadow plants with a longer growing season had a higher
plasticity in adjusting their life-cycle stage and were more
sensitive to preseason climate factors [75]. Furthermore,
the earlier POS enabled the vegetation to assimilate more
carbon [76] and accelerated vegetation photosynthesis in
autumn [12].

V. CONCLUSION
The reliable detection and attribution of variations in the
EOS are the prerequisites for simulating ecosystem carbon
cycle processes under climate change. This study provided an
important comparative analysis of the effect of four smooth-
ing methods on the extraction of the EOS for different plant
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functional types. Overall, there was a fairly good agreement
among the EOS dates obtained with the four smoothing
methods in terms of their representation of spatial patterns
and interannual variations. Furthermore, we found advancing
trends of EOS in the grassland and cropland regions, and
an extensive delayed trend in the forest region during the
period of 2001-2017. Our study also revealed that Tmin, Tmax,
and SSD exerted positive effects on the EOS trends across
the NIM, while an increase in RHU and precipitation would
lead to an earlier EOS. We further investigated the relation-
ship between EOS and both vegetation growth in the period
before the EOS and POS, and found a heterogeneous spatial
pattern. Summer vegetation growth generally advanced the
steppe EOS, while delayed the EOS of meadow and forest
regions. In addition, an earlier POS would advance the EOS
of steppe, but the relationship was the opposite in meadow
and forest areas. These observations indicated that climate
factors and the preceding growth stage of vegetation jointly
determined the variation of EOS in the NIM. Future studies
are needed to investigate the potential interactions between
the environmental controlling factors and to develop a full
understanding of the mechanisms influencing the autumn
phenology.
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A B S T R A C T

Increased vegetation peak growth and phenological shifts toward spring have been observed in response to 
climate warming in the temperate regions. Such changes have the potential to modify warming by perturbing 
land‒atmosphere energy exchanges; however, the signs and magnitudes of biophysical feedback on surface 
temperature in different biomes are largely unknown. Here, we synthesized information from vegetation growth 
proxies, land surface temperature (LST), and surface energy balance factors (surface evapotranspiration (ET), 
albedo, and broadband emissivity (BBE)) to investigate the variations in timing (PPT) and productivity (PPmax) of 
seasonal peak photosynthesis and their time-lagged biophysical feedbacks to the post-season LST in Inner 
Mongolia (IM) during 2001–2020. We found that increased PPmax, rather than advanced PPT, exhibited a sig
nificant impact on LST, with divergent signs and magnitudes across diurnal periods and among different biomes. 
In the grassland biome, increased PPmax cooled both LST during daytime (LSTday) and nighttime (LSTnight) 
throughout the post-season period, with a more pronounced response during daytime and diminishing gradually 
from July to September. This cooling effect on LST was primarily attributed to enhanced ET, as evidenced by the 
greater effect of ET cooling than that of albedo warming and BBE cooling based on a structural equation model 
(SEM). In the forest biome, increased PPmax led to a symmetrical warming effect on LSTday and LSTnight, and none 
of the surface energy balance factors were identified as significant intermediate explanatory factors for the 
observed warming effect. Moreover, the responses of average LST (LSTmean) and diurnal temperature range of 
LST (LSTDTR) to variations in PPmax were consistent with those of LSTday at two biomes. The observations above 
elucidate the divergent feedback mechanisms of vegetation peak growth on LST among different biomes and 
diurnal cycles, which could facilitate the improvement of the realistic parameterization of surface processes in 
global climate models.   

1. Introduction

Vegetation plays a fundamental role in hydrothermal cycles, acting
as a link between the hydrosphere and atmosphere (Bonan et al., 1992; 
Piao et al., 2019). In the context of global warming, extensive vegetation 
greening has been observed unequivocally across the globe over the past 
three decades (Forzieri et al., 2017; Zhu et al., 2016). Such greening can 
either amplify or dampen the dominant warming signal by modifying 
the seasonal cycles of biochemical and biophysical processes that affect 
the partitioning of net radiation into latent and sensible heat fluxes at 
the land‒atmosphere interface (Lee et al., 2011; Lian et al., 2022; Peng 
et al., 2014). Moreover, the associated phenological shifts exert a 

regulatory effect on these feedbacks (Richardson et al., 2013), primarily 
because of their observed sensitivity to climate change and variability 
(Jeong et al., 2011a; Vitasse et al., 2018). However, previous studies 
have focused primarily on the overall growth status of the entire 
growing season and the two phenological events that determine its 
length (i.e., the start (SOS) and end (EOS) of the growing season) (Shen 
et al., 2022; Xu et al., 2020), thereby overlooking the separate feedback 
of peak season photosynthetic activities to climate. Peak season photo
synthetic activities serve as an indicator not only of the capacity of 
terrestrial ecosystem productivity (Gonsamo et al., 2018; Xu et al., 
2016), but also of the timing and magnitude of resource availability 
(Buermann et al., 2013; Huang et al., 2018). Shifts in these activities 
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represent key transition points in the surface energy budget and can 
have significant implications for ecosystem processes and feedbacks 
(Park et al., 2019; Piao et al., 2019). Consequently, there is a compelling 
need to assess the lagged feedback of peak season photosynthetic ac
tivity on surface temperature. 

The net vegetation effect on surface temperature differs across the 
Northern Hemisphere (Li et al., 2015; Peng et al., 2014), owing to the 
involvement of multiple biophysical processes linked to vegetation 
modification, such as surface evapotranspiration (ET), albedo, short
wave transmissivity, and longwave air emissivity, contributing to the 
complexity of vegetation-climate feedbacks (Forzieri et al., 2017; Huang 
et al., 2022; Lian et al., 2022). In colder climates of boreal regions, 
greening exerts a warming effect on local temperatures through reduced 
albedo, which increases the amount of absorbed incoming shortwave 
radiation at the surface (Li et al., 2016). However, such warming effects 
disappear and switch to strong cooling effects in tropical lands, as a 
result of ET-induced cooling effect outweighing the albedo-induced 
warming effect (Feldman et al., 2023; Li et al., 2015). An increase in 
the strength of plant-mediated ET can enhance turbulent energy dissi
pation and cause net surface cooling (Peng et al., 2014). For temperate 
regions, the net effect of vegetation change on surface temperature re
mains controversial, because of the competing effects of albedo and ET 
on climate (Jeong et al., 2011b; Lee et al., 2011). Furthermore, opposing 
signals in different seasons may be partly responsible for conflicting 
conclusions regarding the feedback of annual vegetation growth (Li 
et al., 2016; Shen et al., 2022). For instance, Lian et al. (2022) demon
strated that the biophysical feedback effects of vegetation shift from 
warming-dominated in colder seasons to cooling-dominated in warmer 
seasons, highlighting the variability of vegetation feedbacks with 
intra-seasonal temperature conditions (Xue et al., 2021). However, the 
evaporative cooling effect in warmer seasons (such as summer) may also 
be constrained by soil moisture availability, as higher transpiration rates 
require adequate water supply (Pitman et al., 2011; Swann et al., 2012). 
The advanced onset of spring green-up leads to the premature depletion 
of summer soil moisture, especially in water-limited regions (Buermann 
et al., 2013), which could cause a substantial decline in latent cooling 
and subsequent warming of the surface temperature in summer 
(Peñuelas and Filella, 2009). Therefore, there is large uncertainty over 
the feedback mechanisms of vegetation activities during the peak sea
son, along with the mediation of the phenological shifts. Additionally, 
surface broadband emissivity (BBE), as an important component char
acterizing the biogeophysical processes, also plays a key role in the 
temperature feedback of vegetation dynamics (Kuo et al., 2018; Zhou 
et al., 2008). Greening induced increase in BBE would enhance the 
outgoing longwave radiation and reduce the sensible heat flux, which 
further cool the surface temperature (Liu et al., 2020; Zhou et al., 2003). 
However, such cooling effect of BBE was more pronounced in the arid 
and semi-arid regions with sparse vegetation cover (Cheng and Liang, 
2013; Ogawa and Schmugge, 2004), suggesting a potential discrepancy 
in the explanatory ability of BBE on vegetation feedback to surface 
temperature across different biomes. The commonly studied biophysical 
processes (i.e., ET and albedo) induced by vegetation greening primarily 
occur during daytime, thereby affecting daytime temperature more than 
nighttime temperature (Peng et al., 2014; Shen et al., 2015). In contrast, 
variations in BBE have a more substantial impact on surface temperature 
during nighttime compared with during daytime (Zhou et al., 2007, 
2008). Therefore, it is essential to comprehensively consider these sur
face energy balance factors to achieve a more precise understanding of 
the vegetation feedback to climate. 

Until recently, studies quantifying the biophysical temperature ef
fects of vegetation change could be categorized into two types: land use/ 
land cover change, (e.g., afforestation/deforestation) (Li et al., 2015; 
Peng et al., 2014), and climate change-induced greening (i.e., change in 
vegetation intensity) (Li et al., 2023; Shen et al., 2015, 2022). Studies 
based on afforestation areas typically assume the complete replacement 
of short vegetation (croplands and marginal lands) with forest to amplify 

the signal of complete land-use transitions (Rigden and Li, 2017). 
However, such an empirical approach might be unable to adequately 
comprehend the temporal changes in vegetation biophysical effects due 
to the space-for-time assumption (Peng et al., 2014; Wang et al., 2018), 
which overlooks temporal fluctuations in vegetation growth. The 
persistent greening phenomenon is prevalent globally, and its temper
ature feedback is more constructive for global warming signals and ex
tends beyond the cases of vegetation-type replacement that occupy only 
a relatively small fraction of global land. Despite systematic quantifi
cation of the feedback of widespread greening across different lat
itudinal zones (Forzieri et al., 2017; Jeong et al., 2011b; Lian et al., 
2022), researchers often overlook the heterogeneity among different 
biomes. Such an approach would obscure or confound the specific bio
physical feedback information of different biomes on climate even 
within the same latitudinal zones, owing to their distinct fundamental 
characteristics. Plant functional type modulates the impact of vegetation 
on surface energy partitioning (Zheng et al., 2019; Forzieri et al., 2020). 
For instance, in contrast to grasslands with shallow soil moisture, forests 
exhibit a lower sensitivity of energy terms to greening due to a more 
conservative and even utilization of water resources facilitated by a 
deeper rooting system (Forzieri et al., 2020). Plant functional types also 
directly lead to differences in albedo change trends (Yan et al., 2021). 
Forests, in comparison to shorter vegetation types, display intricate 
vertical and horizontal structures characterized by distinct canopy 
spectral features (Hadi Pfeifer et al., 2017). Consequently, the differ
ential radiation transmission and absorption in the forest canopy 
(Richardson et al., 2013; Zhu et al., 2022) have the potential to result in 
divergent feedback mechanisms when compared to grasslands. There
fore, there is substantial degree of ambiguity regarding the signs and 
magnitudes of the temperature feedback of different biome. 

To address the above issues, Inner Mongolia (IM) in northern China, 
a temperate region characterized by profound vegetation changes (Bao 
et al., 2019), was selected as an ideal region to investigate the temper
ature feedbacks of variations in peak season photosynthetic activities in 
different biomes. This study aimed to answer the following questions: 
(1) How have the timing (PPT) and productivity (PPmax) of seasonal 
peak photosynthesis changed in IM over the last two decades? (2) Are 
there variations in the signs and magnitude of the feedback of peak 
season photosynthetic activities on land surface temperature (LST) 
across the diurnal period and among different biomes? (3) Which sur
face energy balance factors (ET, albedo, or BBE) serve as primary, in
termediate explanatory indicators in the negative/positive feedbacks of 
peak season photosynthetic activities? The findings of present study 
could enhance our understanding of the mechanisms of land surface 
biophysical processes and facilitate projection of the effects of future 
climate change. 

2. Materials and methods 

2.1. Study area and biome classification 

Inner Mongolia (IM) Autonomous Region is located in the northern 
border area of China, is bordered by Mongolia to the north, spanning 
97◦12′ − 126◦04′ E and 37◦24′ − 53◦23′ N, and covering a total area of 
approximately 118.3 km2 (Fig. 1a). The elevation of IM shows a 
downward sloping trend from south to north and from west to east, with 
majority ranging between 1000 and 1500 m (Fig. 1a). The study area 
spans several climate zones, transitioning from arid and semi-arid in the 
northwest inland region to humid and semi-humid in the southeast 
coastal region, with an average annual temperature of 1–15 ◦C and an 
average annual precipitation of 50–500 mm. The vegetation type of IM 
follows an evident geotropic pattern, which was controlled by the 
geographical location and climatic conditions, ranging from the eastern 
forested zone to the central grassland zone and then to the western 
desert zone (Li et al., 2018) (Fig. 1b). The vegetation type data used in 
our study were obtained from digitized results Suld et al. (2015) based 
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on field research (Li, 1962, 1990). The undulating topography and 
diverse vegetation types have resulted in an extremely fragile environ
ment that is particularly sensitive to climate change (Guo et al., 2020). 
To thoroughly analyze feedback across different biomes, the study area 
was divided geographically into two main biomes: grasslands and for
ests. The grassland biome included forested grassland, typical grassland, 
desert grassland, and sandy grassland. There was a noticeable difference 
in soil moisture and mean LST between the forest and grassland biomes, 
with higher soil moisture and lower mean LST in the forest biomes, and 
lower soil moisture and higher mean LST in the grassland biomes 
(Fig. 1b–d). 

2.2. Datasets and pre-processing 

2.2.1. Proxies of vegetation growth 
We evaluated vegetation peak season photosynthetic activities (PPT 

and PPmax) using three different satellite-based datasets (gross primary 
production (GPP), normalized difference vegetation index (NDVI), and 
near-infrared reflectance of vegetation (NIRv)) from 2001 to 2020. The 
datasets were utilized as follows: 

The GPP for the period 2001–2020 was obtained from the GOSIF- 
GPP dataset, which utilizes a biome-specific linear relationship be
tween flux tower-based GPP and a global sun-induced chlorophyll 
fluorescence (SIF) data set from the Orbiting Carbon Observatory-2 
(OCO-2) (referred to as GOSIF) (http://globalecology.unh.edu/) (Li 
and Xiao, 2019). The GOSIF-GPP dataset, with a temporal resolution of 
8-day and a spatial resolution of 0.05◦, was estimated using a machine 
learning modelthat incorporates various variables representing vegeta
tion conditions, meteorological conditions, and land cover information 
as input. The dataset exhibits reasonable seasonal and spatial patterns 
and high correlated with GPP data from FLUXNET (Li and Xiao, 2019). 

The NDVI for the period 2001–2020 was obtained from the 
MOD13C1 version 6 dataset, with a temporal resolution of 16-days and a 

spatial resolution of 0.05◦. The dataset was pre-processed for radiation 
calibration, cloud detection, and atmospheric correction to remove the 
noise caused by sensors and other factors. In addition, a Moderate- 
Resolution Imaging Spectroradiometer (MODIS) specific synthesis 
method that adopted product quality assurance was also applied 
togenerate 16-day composite NDVI data free of low-quality observations 
for phenology extraction. To focus on regions with vegetation and sea
sonality, the pixels with mean NDVI values < 0.1 and annual maximum 
NDVI failing to occur within the June–August were discarded from the 
analysis (Jeong et al., 2011a). 

The NIRv (Badgley et al., 2017) was calculated by NDVI and near 
infrared (NIR) from the MOD13C1 dataset. The NIRv, as a direct index of 
photons intercepted by chlorophyll, can differentiate between the con
founding effects of background brightness, leaf area and distribution of 
photosynthetic capacity with depth in canopies. It exhibits a higher 
correlation with observed GPP than with NDVI. The NIRv were calcu
lated as follows: 

NIRv=(NDVI − C) × NIR (1)  

where the parameter C was set to 0.08 according to (Badgley et al., 
2017), NIR (841–876 nm). 

2.2.2. LST dataset 
LST data for the period 2001–2020 were obtained from Terra/ 

MODIS in monthly composite form and a spatial resolution of 0.05◦

(MOD11C3), which were downloaded from the NASA website 
(http://www.nasa.gov/). The LST data included daytime (local solar 
time ~10:30) and nighttime (local solar time~22:30) temperature ob
servations. In the present study, we amid to investigate the impacts of 
peak season plant activities on post-season LST variations. Therefore, 
the post-season was defined as the period from July to September 
considering that the multiyear mean PPT of the study area primarily 
occurred in late June to mid-July. We first extracted the 8-day composite 

Fig. 1. Geographic location of study area (a), the distribution of vegetation types (b), summer soil moisture (c), and summer land surface temperature (LST) of daily 
mean (d). 
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of the average LSTday and LSTnight bands of post season from the remote 
sensing products. Subsequently, the monthly mean LSTday and LSTnight 
values were computed by aggregating the mean values of three or four 
images corresponding to each month. Finally, the average LST (LSTmean) 
and the diurnal temperature range of LST (LSTDTR) were constructed 
from LSTday and LSTnight. 

2.2.3. Surface energy balance factors 
Surface ET, albedo, and BBE are the three major surface energy 

balance factors that determine the positive/negative feedback of vege
tation activity in climate systems (Peng et al., 2014; Shen et al., 2015; 
Zhou et al., 2008). In the present study, ET, albedo, and BBE were 
employed as the intermediate explanatory factors in the relationships 
between LST and PPT and PPmax to investigate the feedback mechanisms 
of the variations in peak season photosynthetic activities on LST. 

The monthly ET utilized in this study was obtained from the Global 
Land Data Assimilation System (GLDAS) version 2.1 datasets, which 
provided by the Goddard Earth Sciences Data and Information Services 
Center (https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/). 
The GLDAS datasets ingest satellite- and ground-based observational 
data products and use advanced land surface modeling data assimilation 
techniques to provide optimal fields of land surface states and fluxes. In 
the present study, the GLDAS-ET dataset spanning the period 
2001–2020, with a spatial resolution of 0.25◦, was resampled to 0.05◦

using the nearest neighbor method to match the spatial resolution of the 
vegetation growth proxies and LST data. 

Shortwave white-sky albedo and longwave (window: 8–13.5 μm) 
BBE datasets for the period 2001–2020 were obtained from the Global 
Land Surface Satellite (GLASS) product (http://glass-product.bnu.edu. 
cn/index.html), generated by the Advanced Very High-Resolution 
Radiometer (AVHRR) at a temporal resolution of 8-days and a spatial 
resolution of 0.05◦. The GLASS albedo product was validated using 
FLUXNET observation data and showed high quality and accuracy 
compared to the MODIS instrument Bidirectional Reflectance Distribu
tion Function (BRDF)/albedo product. The dataset provides black-sky 
and white-sky albedo, and the white-sky data can more closely reflect 
the condition of the surface land cover and is more stable for long-term 
global environmental change observation (Liang et al., 2013). The 
GLASS BBE was derived by utilizing transfer models that incorporate 
both AVHRR visible and near-infrared reflectance and MODIS short
wave albedos. In this study, monthly white-sky albedo and BBE were 
generated by aggregating the mean values of three or four images cor
responding to each month. 

2.3. Methods 

2.3.1. Phenological metrics retrieval 
A sixth-degree polynomial function (Piao et al., 2006) was first used 

to construct daily vegetation proxies (GPP, NDVI, and NIRv) for each 
pixel using Eq. (2). Subsequently, the maximum value of sixth-degree 
polynomial function fitted curves was defined as PPmax, and its corre
sponding date was then defined as PPT for each vegetation proxy. 

VIt = a0 + a1t + a2t2 + a3t3 + ...+ a6t6 (2)  

where, VIt is the sixth-degree polynomial function fitted vegetation 
proxy for Julian date t; a0,.., an are the fitted coefficients derived from 
least-squares regression. 

2.3.2. Theil‒Sen slope estimation and Mann‒Kendall significance 
test 

The Theil‒Sen slope estimator is a median-based non-parametric 
trend test estimator, which has no strict requirement of the time series to 
meet the assumptions of serial autocorrelation and normal distribution, 
and can effectively deal with small outliers and missing value noise 
(Akritas et al., 1995). In this study, the trends of PPmax and PPT in the 

time series were calculated using the Theil‒Sen slope estimator. The 
calculation method is as follows: 

β=Median
(

Xj − Xi

j − i

)

,∀j > i (3)  

where, β is the median value of the slope of all data. If β > 0, the 
vegetation change shows an upward trend, and if β < 0, the vegetation 
change shows a downward trend. Xi and Xj are the variables value at a 
time i and j, respectively, and Median represents the median value. 

The Mann‒Kendall (M‒K) significance test is a non-parametric test 
method, which supplements Theil‒Sen slope statistics, and is used to 
test the significance of the time series trend. The calculation method is as 
follows: 

Z =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅
var(S)

√ , S > 0

0, S = 0
S + 1
̅̅̅̅̅̅̅̅̅̅̅̅̅
var(S)

√ , S < 0

(4)  

S=
∑n− 1

i=1

∑n

j=i=1
sign

(
VIsj − VIsi

)
(5)  

var(S) =
n(n − 1)(2n + 5)

18
(6)  

sign
(
Xj − Xi

)
=

⎧
⎨

⎩

1,Xj − Xi > 0
0,Xj − Xi = 0
− 1,Xj − Xi < 0

(7)  

where, Xi and Xj are the variable values at times i and j, respectively, n is 
the length of the time series, sign is the sign function, and Z value of less 
than 0 indicates a downward trend; while a value of greater than 0 in
dicates an upward trend. When the absolute value of Z is > 1.65, 1.96, 
and 2.58, it means that the trend has passed the significance test with 
reliabilities of 90%, 95%, and 99%, respectively. At 95% reliability test 
was used in the present study. 

2.3.3. Pearson correlation analysis 
To investigate the relationship between PPT and PPmax and their 

impacts on LST variations, Pearson’s correlation analysis was used to 
examine the correlation between vegetation peak season photosynthetic 
activities (PPT and PPmax) and LST (LSTday, LSTnight, LSTmean, and 
LSTDTR) of each month of the post-season for the entire study area. All 
variables were linearly detrended before the Pearson’s correlation 
analysis. This approach allowed us to disentangle the unidirectional 
PPT/PPmax-LST effect from the simultaneously changing climate and 
vegetation dynamic signal. The formula of Pearson’s correlation method 
is as follows: 

rxy =

∑n

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

(yi − y)2
√ (8)  

where, xi and yi were the values of the i year, x and y are the average 
values of all years, n is the length of the time series. When r > 0, the two 
variables are positively correlated, and when r < 0, the two variables are 
negatively correlated. 

2.3.4. Structural equation model 
Structural equation modeling (SEM), as a confirmatory factor anal

ysis, can partition the direct and indirect causal relationships of a 
complex natural system, and has been widely applied in ecological 
research (Xie et al., 2021; Yu and Leng, 2022). The SEM not only 
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identifies the influence degree (standardized path coefficient) for each 
influence path, but also estimates the goodness-of-fit of the whole model 
to determine whether to modify the possible conceptual model (Yu and 
Leng, 2022). In this study, we utilized SEM to explore the regulating 
roles of surface ET and albedo in PPmax feedbacks on LST (Fig. 2). The 
SEM model is defined as follows: 

y=By + Γx + ζ (9)  

where, y and x indicate the column vectors of the exogenous and 
endogenous variables, respectively; B, Γ, and ζ are the relationships 
between the endogenous variables, influence of exogenous variables on 
endogenous variables, and residual term of the structural equation, 
respectively. Note that all the input parameters of the model were lin
early detrended. 

3. Results 

3.1. Spatiotemporal patterns of peak season photosynthetic activities 

All three indices (GPP, NDVI, and NIRv) were found to have similar 
spatial heterogeneity gradients (Fig. S1) and interannual variation 
(Fig. 3a–c, and 3e-g) in peak season photosynthetic activities (PPmax and 
PPT) of the IM during the period 2001–2020. However, the PPT inferred 
from the GPP generally occurred earlier than that inferred from VI-based 
estimates (NDVI and NIRv) (Figs. S1e–g). On average, the forest 
ecosystem in the northeastern part of the study area had a higher PPmax 
and attained a PPT earlier than the grassland ecosystem (Figs. S1d and 
h). Specifically, the multi-year averaged PPT of the forest and grassland 
biomes occurred on the 200th and 219th days of the year (DOY), 
respectively. Furthermore, the multi-year averaged PPmax of the forest 
biome (0.66) was nearly twice as high as that of the grassland biome 
(0.29). 

Temporally, the different data-averaged PPmax experienced a wide
spread increasing trend, occupying 93.24% of the entire region, and the 
pixels with a significant increasing trend (41.96%) were distributed in 
the southwestern and eastern areas of IM, such as the Mu Us Sandy Land, 
Hetao irrigation areas, and Horqin Sandy Land (Fig. 3d). Regionally, 
PPmax increased significantly in both grassland (0.29 × 10− 2 year-1, P <
0.01) and forest (0.30 × 10− 2 year-1, P < 0.01) biomes (Fig. 4a). 

Regarding PPT variations, the different data-averaged PPT exhibited a 
complex spatial pattern, with mixed advanced (59.21%) and delayed 
(40.79%) signals (Fig. 3h), evidenced by a non-significant change trend 
(0.01 days year-1, P > 0.05) in the regional mean PPT (Fig. 4b). 
Advanced PPT pixels were spread over most areas of IM, and areas with 
significant advancement (14.09%, P < 0.05) were mainly in the north
eastern forest ecosystems of the interest region (Fig. 3h). Therefore, the 
regional mean PPT of the forest biome showed a significant advancing 
trend (0.32 days year-1, P < 0.01; Fig. 4b). In contrast, the pixels of the 
delayed PPT were primarily concentrated in grassland ecosystems, such 
as the Xilingole Grasslands in the central part and Hulunbuir Grasslands 
in the northern part of the study area (Fig. 3h), resulting in a delayed but 
insignificant trend at the regional mean scale of the grassland biome 
(0.05 days year-1, P > 0.05; Fig. 4b). 

Furthermore, we found a close relationship between the interannual 
variations in PPmax and PPT, with high spatial heterogeneity across the 
study region (Fig. S2). Increased PPmax was accompanied by advanced 
PPT in more than a half of IM (62.31%), which mainly occurred in the 
Mu Us Sandy Land in southwestern part of IM and most of northeastern 
part of IM, where the forest ecosystem was dominant. The remaining 
areas (37.69%) experienced a delayed PPT (Fig. 3h) and had an 
increased PPmax accompanying the delayed PPT (positive correlation 
coefficients), which were found mostly in the Hetao irrigation areas in 
western IM, the Xilingole Grasslands in central IM, and the Hulunbuir 
Grasslands in northern IM. 

3.2. Cooling/warming effects of peak season photosynthetic activities on 
local LST 

We hypothesize that increased PPmax and delayed/advanced PPT will 
turbulently affect the surface energy balance, and exert a sizable time- 
lagged influence on the post-season (July–September) LST. To test this 
hypothesis, we initially examined the correlation between inter-annual 
fluctuations of LST and PPmax and PPT. The analysis revealed that 
PPmax had an extensive negative spatial correlation with LSTday in 
grasslands over all months of the post-season, occupying 98.68% (July), 
98.25% (August), and 91.37% (September) of the grasslands in IM 
(Fig. 5a–c), and implying a cooling effect of enhanced peak season 
photosynthetic production on LST during the daytime in grassland 

Fig. 2. Flowchart of steps in the methodology (GPP: Gross Primary Production; NIRv: Near-infrared Reflectance of Vegetation; NDVI: Normalized Difference 
Vegetation Index; PPT: Timing of seasonal peak photosynthesis ; PPmax: Productivity of seasonal peak photosynthesis; ET: Evapotranspiration; BBE: Broad
band Emissivity). 
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biomes. Interestingly, the magnitude of the cooling effect reduced 
gradually from July to September, as evidenced by the decreased area 
proportion (Fig. 5a–c) and the magnitude of the negative correlation 
coefficients (Fig. 6a). In contrast to grasslands, the PPmax of forested 
regions were positively correlated with LSTday throughout the post- 
season (Fig. 6c), with positive correlation coefficients of 57.37% 
(July), 80.57% (August), and 87.05% (September) (Fig. 5a–c). This 
phenomenon implies that enhanced PPmax had a warming effect on the 
post-season LSTday of the forest ecosystem, and such effects are more 
pronounced in the later months of the post-season. Similar to LSTday, 
PPmax had an opposite effect on the post-season LSTnight of the grassland 
and forest biomes, despite having different degrees of effect compared to 
LSTday (Fig. 5d–f and Fig. 6b, d). Specifically, LSTnight exhibited a non- 
significant negative correlation (P > 0.05) with the PPmax of grassland 
ecosystem across all months of the post-season (Fig. 6b), indicating that 
the impact of PPmax on LSTnight was weaker than that on LSTday. 
Regarding the forest biome, LSTnight had a significant negative correla
tion (P < 0.05) with PPmax in the majority months of the post-season, 
being comparable to LSTday in terms of magnitude and signals of cor
relation coefficients, indicating a symmetrical influence of PPmax on the 
daytime and nighttime LST in the forest biome. Furthermore, the re
lationships between PPmax and LSTmean and LSTDTR exhibited features 
similar to those with LSTday at both the pixel-scale and biome-scale 
across all months (Figs. S3–4), that is, increased PPmax cooled the 
LSTmean and LSTDTR of the grassland ecosystem, while it warmed the 
LSTmean and LSTDTR of the forest ecosystem. 

Contrary to PPmax, the feedbacks of PPT variations on LSTday and 
LSTnight were neither significant across the post-season, nor dependent 

on the different biomes (Figs. 7–8). However, the relationship between 
the PPT and LST (daytime and nighttime) demonstrated a clear 
discrepancy among the different months over the entire study area. In 
July, the PPT was positively correlated with both LSTday and LSTnight in 
the majority of pixels (more than a half of the total pixels), although this 
was not significant (Fig. 7a, d), indicating that advanced PPT had a 
cooling effect on both LSTday and LSTnight over the regions of interest to 
some extent. However, in August and September, PPT had opposite ef
fects on LSTday and LSTnight over the IM, that is, advancing PPT cooled 
LSTday, while warming LSTnight (Fig. 7b and c, e, f). Similar to the re
lationships observed between PPmax and LST indices, the relationships 
between PPT with LSTmean and LSTDTR exhibited comparable charac
teristics to those of LSTday in terms of spatial patterns and regional scale 
throughout all months (Figs. S5–6). Typically, the feedback of PPmax 
interannual fluctuations on LST was relatively significant compared 
with PPT, with considerable diurnal and between biome diversity. As a 
result, we exclusively used PPmax in the subsequent analyses to reveal 
differences in land surface feedback mechanisms across different biomes 
and diurnal LST. In addition, the mechanisms of land surface feedback of 
PPmax to LSTmean and LSTDTR were not considered further because their 
responses to peak season photosynthetic activities were consistent with 
LSTday. 

3.3. Explanatory roles of surface energy balance factors in the cooling/ 
warming effect of PPmax on LST 

SEM was used to elucidate the indirect effects of increased PPmax on 
LST by regulating ET, albedo, and BBE. There were three main pathways 

Fig. 3. Spatial distributions of linear trends of PPmax and PPT over Inner Mongolia (IM) during 2001–2020 based on GPP (a and e), NDVI (b and f), NIRv (c and g), 
and different data averages (d and h), respectively. (Sig, significantly changed; NSig, changed but not significantly; significant at P < 0.05). 

Fig. 4. Interannual variations of PPmax (a) and PPT (b) from 2001 to 2020 averaged for three data for the entire study area and two vegetation types (*represent 
significant trends at P < 0.05). 
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by which PPmax affected LST indirectly: the “ET effect” (“PPmax - ET - 
LST”), “albedo effect” (“PPmax - albedo - LST”), and “BBE effect” (“PPmax 
- BBE - LST”). In the grassland biome, the SEM results showed that PPmax 
enhancement significantly increased both ET (P < 0.001) and BBE (P <
0.001), and decreased albedo (P < 0.001) in all months of the post- 
season (Fig. 9a–c). However, only the “ET effect” was be a primary 
pathway responsible for the variation in LSTday based on its significant 
pathway coefficient (P < 0.05), suggesting that enhanced peak photo
synthetic production cooled the LSTday through increasing ET during the 
late growing season. Interestingly, such a cooling effect of PPmax on 
LSTday was weakened progressively from July (standardized indirect 
effect (SIE) = − 0.94) to September (SIE = − 0.54) (Fig. 9a–c). With re
gard to LSTnight, variations in ET, albedo, and BBE induced by increased 
PPmax were not the intermediate explanatory factors in the correlation 
between LSTnight and PPmax, primarily due to non-significant pathway 
coefficients (ET/albedo/BBE → LSTnight: P > 0.05; Fig. 9a–c), as well as 
very low SIE values for all months (Fig. 10). 

In the forest biome, although PPmax affected some surface energy 
balance factors (such as albedo in all months and BBE in September) 
significantly, variations in PPmax had a limited effect on both LSTday and 

LSTnight over all months of the post-season via the “ET effect,” “albedo 
effect,”, and “BBE effect,” as observed by inapparent pathway co
efficients (P > 0.05; Fig. 9d–f) and negligible SIE values (almost all <0.3; 
Fig. 10). The phenomenon suggests that the warming effects of increased 
peak photosynthetic production on LST variations during the daytime 
and nighttime were independent of variations in ET, albedo, and BBE in 
the forest ecosystem. In addition, we observed similar patterns for each 
biome and month when employing the ridge regression model 
(Tables S2–3), to further verify the robustness of the SEM results. In 
other words, variations in LSTday in the grassland biome were more 
sensitive (as reflected by the regression coefficient being significant at a 
level of 0.05) to ET than to albedo and BBE during all months (Table S2). 
However, there was no significant regression coefficients between LST 
and the three surface energy balance factors in grassland LSTnight or 
forest LSTday/LSTnight in most months (Tables S2–3). 

4. Discussion 

Peak season photosynthetic activities (PPmax and PPT) derived from 
SIF GPP, NDVI, and NIRv had similar spatial heterogeneity gradients 

Fig. 5. Spatial distributions of the correlation coefficients between PPmax and LSTday (a–c) and LSTnight (d–f) of July (a, d), August (b, e), and September (c, f) over the 
study areas from 2001 to 2020. 

Fig. 6. Correlations between PPmax and LSTday (a, c) and LSTnight (b, d) for different biomes: grassland (a, b) and forest (b, d). (Jul: July, Aug: August, 
Sep: September). 
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across the IM (Fig. S1). On average, the forest biome in northeastern IM 
had a higher PPmax and attained an earlier PPT than the grassland 
biome. However, it is noteworthy that PPT inferred from the SIF GPP 
generally occurred earlier than the other VI-based estimates (NDVI and 
NIRv) (Fig. S1). This finding is consistent with the global scale work of 
Wang et al. (2020), who investigated the patterns of peak growing 
season based on optical, microwave, and fluorescence satellite data, and 
found that SIF-PPT occurred earlier than NDVI-PPT and Vegetation 
optical depth (VOD)-PPT for temperate grasslands. SIF is an optical 
signal directly emitted by plants during the light-based reactions of 
photosynthesis, whereas NDVI and NIRv are greenness indices based on 
canopy reflectance of vegetation seasonality (Badgley et al., 2017; 
Tucker et al., 2001). Photosynthesis begins to translate prior to changes 
in leaf coloration in response to biophysical constraints such as shorter 
day length, cooler temperatures, and/or progressive water constraints 
(Buermann et al., 2018; Estiarte and Peñuelas, 2015), while canopy 
chlorophyll content appears to persist for a significant amount of time 
following the downregulation of photosynthesis (Zhang et al., 2019). 
This probably explains why the SIF GPP-based PPT occurred relatively 
early compared with the PPT derived from the vegetation greenness 
indices. Nevertheless, the discrepancy among the different datasets did 

not affect the interannual variations in either PPmax or PPT. Overall, we 
found enhanced PPmax and advanced PPT across the study region during 
2001–2020 (4), which is consistent with previous findings of increased 
net carbon uptake and a shift toward an earlier peak growing season 
owing to climate warming (Gonsamo et al., 2018; Park et al., 2019). Our 
findings further confirmed those of many other studies showing that, in 
terms of temporal trends, the SIF and vegetation greenness indices were 
highly consistent in temperate grasslands (Wang et al., 2020). 

It is widely acknowledged that phenological events, such as SOS and 
EOS, play crucial roles in regulation of vegetation feedbacks to climate 
via the exertion of a paramount influence on the intra-seasonal variation 
in surface biophysical properties (Shen et al., 2022; Xu et al., 2020). 
However, we found a weak impact of PPT on post-season (July to 
September) LST over the last two decades (Figs. 7–8). This discrepancy 
in the roles of different seasonal phenological events may be attributed 
to differences in the magnitudes of changes in vegetation growth before 
and after these events. Rapid changes in plant growth status accompa
nying spring onset and autumn dormancy can induce radiative (related 
to surface albedo changes) and non-radiative (related to changes in ET) 
biophysical changes, resulting in abrupt shifts in surface water fluxes 
and energy partitioning between sensible and latent heat (Moore et al., 

Fig. 7. Spatial distributions of the correlation coefficients between PPT and LSTday (a–c) and LSTnight (d–f) of July (a, d), August (b, e), and September (c, f) over the 
study area from 2001 to 2020. 

Fig. 8. Correlations between PPT and LSTday (a, c) and LSTnight (b, d) for different biomes: grassland (a, b) and forest (b, d). (Jul: July, Aug: August, Sep: September).  
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1996; Piao et al., 2019; Richardson et al., 2013). However, owing to the 
persistent nature of the maturity stage (Gonsamo et al., 2018), the 
occurrence of the PPT rarely results in significant changes in surface 
biophysical processes (Li et al., 2015). Compared with PPT, PPmax 
exhibited a significant time-lagged effect on LST for the post-season 
period, with considerable differences between diurnal periods (day
time and nighttime) and among different biomes (grassland and forest) 
(Figs. 5–6). Additionally, our analysis revealed that the relationship 
between PPmax and LSTmean and LSTDTR exhibited similar patterns to the 
relationships observed between PPmax and LSTday (Figs. S3-4). This 
finding implies a major determinant of the change trend of LSTday for the 
variations of LSTmean and LSTDTR, and underscores the importance of 
understanding the feedback mechanisms of PPmax on LSTday. 

In the grassland biome, PPmax was negatively correlated with LSTday 
during the post-season period (Fig. 5a–c), indicating that enhanced 
PPmax had a cooling effect on LSTday during the late growing season in 
the grassland ecosystem. Additionally, the SEM result displayed that this 
negative legacy feedback of PPmax on LSTday in grasslands was primarily 
caused by increase in ET, rather than a decrease in albedo or an increase 

in BBE. This result is consistent with previous research on Tibetan alpine 
grasslands reported by Shen et al. (2015), who revealed that enhanced 
vegetation activity during the growing season may mitigate daytime 
warming by enhancing ET, a cooling process, based on coupling regional 
weather research and forecasting mesoscale model simulations. An in
crease in ET induced by greening was paralleled by a proportional 
decrease in sensible heat, and less available surface energy dissipated as 
latent heat favors evaporative cooling of the surface (Lian et al., 2022; 
Xu et al., 2020). Nevertheless, some studies have demonstrated that the 
greening-induced warming effect of lower albedo would offset the 
cooling effect of higher ET on temperature during the growing season, 
owing to the greater absorption of incoming shortwave radiation over 
the temperate grasslands of China (Shen et al., 2022). In the present 
study, although the surface albedo decreased with an increase in PPmax, 
albedo variations had no decisive effect on post-season LSTday variations 
in the grassland biome. Such uncertainties are predominantly a result of 
the season-dependent balance between the ET-induced cooling effect 
and albedo-induced warming effect; that is, the strength of evaporative 
cooling dwindles gradually toward colder and drier seasons, while the 
strength of albedo warming increases (Li et al., 2015; Lian et al., 2022). 
Consequently, the warming effect of vegetation greening throughout the 
growing season can be attributed to the masking effect of warming 
induced by decreased albedo during spring and autumn on the cooling 
effect of increased ET during summer (Shen et al., 2022). This phe
nomenon may also be the reason that the cooling effect of PPmax on 
LSTday weakened progressively from July to September (Fig. 6a). 
Furthermore, the cooling effect resulting from enhanced PPmax persists 
at nighttime, albeit at a significantly lower magnitude compared with 
the daytime (Fig. 5d-f), which is consistent with previous studies that 
demonstrated a stronger interplay between vegetation greening and 
surface temperature during the daytime than nighttime in arid regions 
(Forzieri et al., 2017). During the daytime, vegetation can dissipate 
sensible heat more efficiently through turbulent diffusion and cools 
down faster than at nighttime under stably stratified conditions (Rigden 
and Li, 2017). Such a diurnal difference may also be partially attributed 
to the intensity of ET. Generally, ET is a major contributor to daytime 
cooling owing to higher transpiration rates during the daytime, while its 
contribution is relatively low during the nighttime (Wang et al., 2014). 
In addition, it is worth mentioning that, despite the lack of statistical 
significance (P > 0.05) in the pathway coefficients (BBE → 

Fig. 9. Structural equation modeling (SEM) results of the relationships between PPmax and ET, BBE and albedo attributes of LST in grassland (a, July; b, August; c, 
September) and forest (d, July; e, August; f, September) biomes. Blue arrows indicate significant positive relationships while red arrows indicate significant negative 
relationships. Black dashed arrows indicate insignificant relationships. Numbers adjacent to arrows are pathway coefficients and are indicative of the effect size of the 
relationship. (*, **, and *** represent significance levels at P < 0.05, P < 0.01, and P < 0.001, respectively). Goodness-of-fit statistics for SEM are shown in Table S1. 

Fig. 10. Standardized indirect effect (SIE) of PPmax on the variation in LSTday 
and LSTnight for grassland and forest biomes in each month. Positive and 
negative values indicate warming and cooling effects of PPmax on LST, respec
tively. (Jul: July, Aug: August, Sep: September). 
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LSTday/LSTnight), an increase in BBE may have a complementary role in 
the cooling effect of PPmax on LST, which varies within a diurnal cycle 
(Fig. 9a–c). An increase in PPmax enhances BBE, resulting in greater 
transmission of longwave energy from land surface to atmosphere. This 
amplifies atmospheric thermal forcing and cools the land surface, 
especially at night (Liu et al., 2020). 

For the forest biome, we found a symmetrical warming effect of 
PPmax on LSTday and LSTnight throughout the post-season, as evidenced 
by similar signs and magnitudes (Fig. 6c and d). In contrast to the 
grassland biome, SEM analysis showed that the direct effects of ET, al
bedo, and BBE on LST in the forest biome were relatively negligible 
(Fig. 9d–f). Despite the cooling effect of ET being amplified under humid 
conditions (Li et al., 2015), it is restricted to the high-latitude northern 
boreal and Arctic regions with colder temperatures and lower solar ra
diation (Forzieri et al., 2017; Zeng et al., 2017), implying a weaker 
explanatory power of ET for LST in colder regions (Peng et al., 2014). 
This partially explains why ET cooling had a limited influence on LST 
over the forest biome in our study, which was mainly distributed in 
higher latitudes between 48 and 54◦ N, as well as higher altitudes in the 
Greater Khingan Mountains. Notably, in addition to affecting how the 
land surface dissipates absorbed energy, ET affects how much energy the 
surface absorbs indirectly through water vapor and clouds (Ramstein 
et al., 1998). For instance, Xu et al. (2020) found that ET-induced 
greening enhanced the water vapor release from the surface to the 
upper layers of the atmosphere in the northern temperate and boreal 
regions without water stress. Consequently, the additional 
boundary-layer water vapor increases the frequency of cumulus clouds, 
which absorb surface long-wave radiation and emit part of it back to the 
surface as downward longwave radiation, ultimately warming the LST 
(Xu et al., 2020). In terms of albedo, our study observed an increased 
albedo in the forest biome instead of the expected decrease associated 
with greening, and the variation in albedo exerted a greater impact on 
LST than did either ET or BBE, despite the non-significance of these 
variables (Fig. 9d–f). There exists a critical threshold at approximately 
50% canopy cover where a turning point in albedo change trends occurs 
with greening (Lukeš et al., 2014). Below the threshold, albedo de
creases as vegetation coverage increases, while above the threshold, 
albedo increases with an increase in vegetation coverage (Lukeš et al., 
2014). The observed increase in albedo as forest greening can presum
ably be explained by the fact that increasing forest coverage is accom
panied by more bright canopies and less dark gaps, leading to an 
increasing albedo in summer (Abera et al., 2019; Yan et al., 2021). 
Therefore, findings from grassland or afforested areas cannot simply be 
transferred to a forest biome with lower interannual variance (Fig. S7). 
In addition, unlike grassland biome, the greening of forest biome has a 
minor impact on the BEE at forest biome (Fig. 9), which can be attrib
uted to the fact that the BBE remains relatively constant over dense 
vegetation (Ogawa and Schmugge, 2004). Furthermore, the symmetrical 
feedback of PPmax to LST during the daytime and nighttime in the forest 
biome can be attributed to its larger heat capacity compared to the 
grassland biome (Richardson et al., 2013), which leads to slower heat 
loss and warm canopies at night (Houspanossian et al., 2013). 

In summary, our study examined the signs, magnitude, and under
lying mechanism of feedback of peak season photosynthetic activities to 
LST within grassland and forest biomes. The result revealed divergent 
impacts of interannual variations in peak season photosynthetic pro
ductivity on LST across different biomes, highlighting the different 
feedbacks between widespread greening and cases of vegetation-type 
replacement (i.e., afforestation). However, it is worth mentioning that 
the widespread greening observed in the grassland biome may include 
the relative contributions of ecological engineering efforts (Tong et al., 
2018), as reforestation and afforestation programmes have been actively 
implemented since the 1980s (Chen et al., 2019). Consequently, it is 
necessary to conduct a comprehensive examination into vegetation type 
alterations and elucidate the temperature feedback mechanisms asso
ciated with different conversion types in future research. Furthermore, 

the dominant evaporative cooling effect identified in our study dem
onstrates a diminishing or potentially reversing trend with increasing 
surface moisture content (Fig. 11), exactly as the observed shifts from 
substantial cooling effects in grassland areas to non-significant effect in 
forested regions. Nevertheless, it should be noted that while it is widely 
acknowledged that the greening-induced ET affects the dissipation of 
surface energy, it also has an impact on the absorption of surface energy 
through water vapor and clouds (Ramstein et al., 1998). Therefore, the 
effect of cloud cover also needs to be considered in further attribution 
analysis to accurately quantify another facet of the ET effect induced by 
greening. Moreover, there are uncertainties regarding the robustness of 
satellite-derived LST in accurately capturing the local thermal condi
tions, despite previous studies advocating that LST can better reflect the 
pure climate impact from land surface greening (Li et al., 2023). Future 
studies need to integrate adequate observations and credible climate 
model estimates of thermal conditions. Additionally, considering that 
phenological events exhibit interannual variations typically on the scale 
of a few days, the use of monthly mean LST in our study may result in the 
underestimation of the phenological effects on LST. Therefore, subse
quent studies require more detailed LST data, such as daily-scale ob
servations, to quantify the feedback of phenological changes on LST. 

5. Conclusions 

In this study, we utilized a SEM to investigate the feedback of peak 
season photosynthetic activities (PPmax and PPT) on local surface tem
perature, mediated by key surface energy balance factors (ET, albedo, 
and BBE) over IM during the period 2001–2020. Our analysis presents 
robust and conclusive evidence of the time-lagged influence of increased 
PPmax, rather than advanced PPT, on LST during the post-season period 
(July to September), with divergent signs and magnitudes across diurnal 
periods and among different biomes. Specifically, increased PPmax 
cooled the LSTday/LSTnight in the grassland biome, with a stronger 
response observed on LSTday than in the LSTnight. However, increased 
PPmax resulted in a symmetrical warming effect on LSTday/LSTnight in the 
forest biome. Our pathway analysis further revealed that the “ET effect”, 
which outweighs the “albedo effect” and “BBE effect”, was the primary 
intermediate explanatory factor for the cooling effect of greening on the 
LST in the grassland biome, particularly during the daytime, with its 
influence gradually diminishing as the season progressed. However, 
none of these effects had a direct impact on the correlation between 
PPmax and LST during either the daytime or the nighttime in the forest 
biome. The findings underscore the divergent feedback mechanisms of 
peak season photosynthetic productivity on LST across different biomes, 
which are influenced by background climatic conditions and extent of 
greening. The results of the present study provide valuable insights that 
facilitate the comprehension of greening-induced biophysical feedbacks 
in an ecosystem sense. 
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Stocker, B.D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., Zeng, N., 
2016. Greening of the earth and its drivers. Nat. Clim. Change 6, 791–795. 

Zhu, Y., Zhang, Y., Zheng, Z., Liu, Y., Wang, Z., Cong, N., Zu, J., Tang, Z., Zhao, G., 
Gao, J., Sun, Y., 2022. Converted vegetation type regulates the vegetation greening 
effects on land surface albedo in arid regions of China. Agric. For. Meteorol. 324. 

W. Rina et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0013-9351(23)01447-0/sref29
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref29
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref29
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref30
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref30
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref30
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref31
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref31
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref31
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref32
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref32
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref32
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref33
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref33
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref33
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref34
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref34
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref34
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref35
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref35
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref35
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref36
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref36
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref37
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref37
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref37
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref37
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref38
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref38
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref38
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref39
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref39
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref40
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref40
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref41
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref41
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref41
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref42
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref42
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref42
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref43
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref43
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref44
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref44
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref44
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref45
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref45
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref46
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref46
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref46
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref46
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref47
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref47
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref47
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref48
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref48
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref48
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref49
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref49
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref50
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref50
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref50
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref50
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref51
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref51
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref51
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref52
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref52
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref53
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref53
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref54
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref54
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref54
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref55
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref55
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref55
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref55
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref56
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref56
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref56
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref56
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref57
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref57
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref57
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref58
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref58
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref59
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref59
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref60
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref60
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref60
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref61
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref61
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref62
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref62
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref62
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref62
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref63
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref63
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref63
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref64
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref64
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref64
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref65
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref65
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref65
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref65
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref66
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref66
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref66
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref67
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref67
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref67
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref68
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref68
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref68
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref68
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref68
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref69
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref69
http://refhub.elsevier.com/S0013-9351(23)01447-0/sref69


Global Ecology and Conservation 46 (2023) e02622

Available online 6 September 2023
2351-9894/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Parallel acceleration of vegetation growth rate and senescence 
rate across the Northern Hemisphere from 1982 to 2015 

Wendu Rina a,b, Gang Bao a,b,*, Quansheng Hai c,d, Jiquan Chen e, Enliang Guo a, 
Fei Li f, Yuhai Bao a,b, Lijuan Miao g, Xiaojun Huang a,b 

a College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China 
b Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Hohhot 010022, 
China 
c Department of Geography, School of Arts and Sciences, National University of Mongolia, Ulaanbaater 14200, Mongolia 
d Baotou Normal College, Baotou 014030, China 
e Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48823, USA 
f Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China 
g School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China   

A R T I C L E  I N F O

Keywords: 
Vegetation growth and senescence rates 
Peak growth 
Phenology 
Northern Hemisphere 
Climate-phenology-canopy development 
linkages 

A B S T R A C T

Growth and senescence rates are critical ecological indicators of seasonality shifts of vegetation, 
with both sensitive to climate change. Here we investigated daily mean vegetation growth and 
senescence rates, and the major climate forcing across the Northern Hemisphere (>30◦N) using 
satellite-derived normalized difference vegetation index (NDVI) and flux-based gross primary 
productivity (GPP) from 1982 through 2015. Both growth and senescence rates are higher at high 
latitudes than those at low latitudes, with spatially-averaged values increased by 1.0 × 10− 4 and 
0.7 × 10− 4 NDVI-units⋅day− 1 per degree latitude. These increases were greater in Eurasia than in 
North America. A parallel acceleration of growth (0.8 ×10− 4 NDVI-units⋅day− 1⋅decade− 1) and 
senescence (0.6 ×10− 4 NDVI-units⋅day− 1⋅decade− 1) rates was found for the 34-year study period. 
The warming-induced increases in vegetation peak growth (peak NDVI) contributed strongly to 
this parallel acceleration, while unequal advances or delays of three key phenological indicators 
(the start (SOS), peak (POS), and end (EOS) of the growing season) exerted influential effects on 
the rates. However, no single climatic factor during any period appeared responsible for the 
variations in growth and senescence rates. In areas with growth and senescence rates that are 
determined by peak growth, temperature and precipitation during the growth period accelerated 
both rates through elevating peak growth. On the other hand, in areas with growth rate deter
mined by SOS, rising temperature before SOS decelerated the growth rate by advancing SOS. In 
areas with senescence rate determined by EOS, both temperature and radiation during the 
senescence period contributed to changes in senescence rate by influencing EOS. In sum, a central 
focus should be placed on the linkages among climate, phenology, and growth and senescence 
rates for quantifying vegetation seasonality and associated ecosystem function under the 
changing climate.   
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1. Introduction 

Seasonality shifts in vegetation are one of the most sensitive biological indicators of climate change (Menzel and Fabian, 1999; Park 
et al., 2015; Richardson et al., 2013). A small change in climate can be directly reflected by shifts in vegetation seasonality, such as the 
timings of green-up, peak growth, and dormancy (Gonsamo et al., 2015; Liu et al., 2016; Piao et al., 2015). This seasonal variation is a 
fundamental determinant of many ecosystem processes and functions in earth-atmosphere systems (Peng et al., 2014; Chen et al., 
2018; Ma et al., 2022; Shen et al., 2022). In the mid to high latitudes of the Northern Hemisphere (generally North of 30◦, NH), 
vegetation turns green at the start of the growing season (SOS) in spring, reaches its peak growth in summer, and fades at the end of the 
growing season (EOS) in autumn, with seasonal climate fluctuations (Jeong et al., 2011; Richardson et al., 2009). In recent years, 
several studies have been conducted on the vegetation growth rate during SOS and the peak of the growing season (POS), showing that 
the growth rate in the NH has been significantly accelerated due to the rising temperature (Park et al., 2020; Wang et al., 2020). For 
example, Park et al. (2020) showed that the vegetation green-up rate across the high latitudes (>60◦N) of the NH has accelerated by 
1.8% month− 1⋅decade− 1 in North America and of 1.0% month− 1⋅decade− 1 in Eurasia from 1982 to 2016 due to increases in tem
perature before SOS and atmospheric CO2 concentration. Wang et al. (2020) reported an accelerated growth rate of alpine grasslands 
in the Tibetan plateau during 1980–2014. However, these studies focused mostly on the maximum growth rate of vegetation, which 
corresponds only to the instantaneous growth rate on the date when the vegetation achieves maximum growth during SOS and POS. In 
contrast, daily mean vegetation growth rate during SOS and POS might be a more important indicator of how climate fine-tunes 
vegetation growth rate during the entire growth period rather than only at one instantaneous timeframe (Wang et al., 2018). In 
addition, both SOS and POS tend to advance over the past three decades in most mid- to high-latitudes of the NH (Gonsamo et al., 2015; 
Jeong et al., 2011). Yet whether these advances have (un)equal responses to climate change and how they influence daily growth rate 
remain unknown. Here we hypothesize that POS is more responsive to the warming trend and has advanced more than SOS. 
Consequently, the daily mean growth rate may accelerate due to the shortened growth period, and vice versa. These premises would 
become more complex if peak growth of vegetation, which was reported to enhance globally (Huang et al., 2018), is considered in the 
estimates of daily growth rate. Unfortunately, the role of peak growth in vegetation growth rate cannot be well investigated by 
considering only changes during the growth period, such as from the maximum growth rate. 

The vegetation senescence rate from POS in summer to EOS in autumn is another key indicator of canopy development, which 
reflects the seasonality of vegetation through regulating ecosystem functioning and climate feedback (Piao et al., 2022). However, it is 
unclear whether the daily mean senescence rate in the NH has accelerated synchronously with the growth rate, as suggested previously 
(Hong et al., 2022; Wang et al., 2018) due to the normal distribution of vegetation growth cycles (Huete et al., 2002), or has decel
erated due to the alleviation of temperature constraints caused by rising temperatures in autumn (Wu et al., 2018). Similar to our 
hypothesis on the growth rate, (un)equal advances (delays) of the POS and EOS, as well as the enhancement of peak growth (Huang 
et al., 2018) may have strong influences on variations in daily senescence rate. 

Although temperature has been recognized as the primary driver of intra- and inter-annual variations in plant growth in temperate 
and boreal regions of the NH (Menzel et al., 2006; Jeong et al., 2011), the extent of its influence on plant growth depends largely on the 
sequence of developmental stages (Seyednasrollah et al., 2018), introducing significant ambiguity regarding vegetation growth and 
senescence rates. For instance, temperature increase has a strong positive impact on the growth rate during the early growth period, 
but as spring progresses into summer and the canopy gradually closes, this positive causal relationship diminishes generally, or can be 
even attenuated by negative impacts (Hong et al., 2022; Piao et al., 2022). In addition, the observed acceleration in growth rate during 
the early growth period and the deceleration in senescence rate during the early senescence period appeared to attribute earlier SOS 
and later EOS induced by rising temperatures (Jeong et al., 2011; Liu et al., 2016; Piao et al., 2022), implying the important role of the 
responses of phenological metrics to temperature in canopy development. Undoubtedly, accurate characterization of the responses of 
canopy development rate to temperature change requires understanding the linkages among temperature, phenology, and canopy 
development. Moreover, it is essential to consider the interactive effects from other climatic factors (e.g., precipitation, radiation) on 
phenological metrics and peak growth of vegetation, because these factors also contribute to vegetation growth (Huang et al., 2018; 
Liu et al., 2016; Flynn and Wolkovich, 2018). Wu et al. (2021b) revealed that higher radiation advances EOS due to photooxidative 
stress and/or sink limitation, thereby counteracting the warming-induced delay in EOS. Precipitation not only determines water 
availability, but is also related to freeze damage during the progression of vegetation growth, but also defining variations in growth 
and senescence rates through interaction with temperature (Fu et al., 2014; Shen et al., 2014). Clearly, it is necessary to fully consider 
multiple inter-seasonal climatic factors, from before SOS to arrival of EOS, to comprehensively quantify variations of growth and 
senescence rates. 

In the present study, we used four algorithms to estimate vegetation growth and senescence rates for the NH from 1982 to 2015, 
using satellite-based normalized difference vegetation index (NDVI) and flux-based gross primary production (GPP) data. The study 
aimed to answer the following questions: (a) Did growth and senescence rates accelerate synchronously across the NH? (b) How did the 
phenologies (SOS, POS, and EOS) and summer peak growth (peak NDVI) of vegetation determine variations in growth and senescence 
rates? (c) How did climate factors affect vegetation growth and senescence rates by altering phenologies and summer peak growth? 
Answering these questions is of particular importance for a deep understanding of vegetation seasonality during the entire growing 
period and its responses to climate change at fine temporal scales. 
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2. Data and methods 

2.1. Study area 

The study area includes the north of 30◦N, where vegetation has clear seasonal variations such as apparent growth and senescence 
processes (Xu et al., 2016). The climate in the study area broadly includes (B) arid, (C) temperate, (D) continental, and (E) polar and 
alpine climates, with twenty-four climate subtypes and apparent latitudinal gradients from temperate and arid climates in the low 
latitudes to continental climates in the middle latitudes and then to polar and alpine climates in the high latitudes and at high altitudes 
(Fig. 1a). Vegetation in the area encompasses grasslands and croplands at low latitudes, forests at middle latitude, and shrublands and 
savannas at high latitudes (Fig. 1b). The geographical distributions of climates and vegetation types can be clearly identified in the 
Köppen-Geiger climate classification map (Fig. 1a) and the MODIS land-cover product (MCD12C1; Fig. 1b), respectively. 

2.2. Data 

2.2.1. Meteorological data 
The meteorological data used in this study include monthly air temperature, precipitation and radiation data of the land component 

of the fifth generation of the European ReAnalysis (ERA5-Land) dataset with a spatial resolution of 0.1◦ during 1982–2015. The ERA5- 
Land dataset was produced by replaying the land component of the European Centre for Medium-Range Weather Forecasts (ECMWF) 
ERA5 climate reanalysis by incorporating model data together with abundant observations across the globe (https://cds.climate. 
copernicus.eu/cdsapp) (Wu et al., 2022). These data provided continuous global land variables over several decades at an 
enhanced resolution compared to the previous version, ERA5, and have been successfully used to study ecosystem responses to climate 
change (Wu et al., 2021a). 

2.2.2. NDVI data 
The third-generation Global Inventory Modelling and Mapping Studies (GIMMS) NDVI dataset, with a spatial resolution of 0.0833◦

and a temporal resolution of 15-day for 1982–2015 (Pinzon and Tucker, 2014), was used to determine daily growth rate and 
senescence rate. The GIMMS NDVI is the most widely used NDVI dataset in vegetation dynamics studies at large spatial and long 
temporal scales due to its (1) longest temporal coverage (1982–2015) at global scale and (2) corrections to the various deleterious 
effects of satellite drift and volcanic aerosols. In this study, pixels with the NDVI values of < 0.1 during the winter months (December 
to March) were regarded as snow-influenced pixels and replaced by the mean value of snow-free pixels for the winter months (Zhang 
et al., 2007). To further eliminate the impacts of non-vegetated areas (e.g., barren and saline-alkali land, or other areas with very low 
vegetation coverage), pixels with annual mean NDVI value of < 0.1 and maximum NDVI not occurring within June–August were 
removed from the analysis (Shen et al., 2020). To match the spatial resolution of the meteorological data, the GIMMS NDVI data were 
spatially aggregated at 0.1◦ using nearest-neighbor interpolation before the following analysis. 

2.2.3. Flux data 
GPP data estimated at the flux measurement sites were used to analyze variations in vegetation growth and senescence rates at 

landscape scale. The 45 flux sites of 554 site-years from the global FLUXNET2015 dataset (http://fluxnet.fluxdata.org/) across the NH 

Fig. 1. Spatial distribution of (a) climates and (b) vegetation types of the NH, with flux measurement sites used to estimate GPP-based vegetation 
growth and senescence rates. Detailed information of the subtypes of climate and MCD12C1 are shown in Table S1. 
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were selected based on the following criteria: (1) no missing values of daily GPP observations, (2) located within the set of effective 
remote-sensing pixels on land north of > 30◦ N, and (3) with at least daily GPP observations for five consecutive years between 1982 
and 2015 (Wu et al., 2017). Monthly temperature, precipitation, and radiation data from the corresponding sites were also used to 
quantify how climatic variables affect variations in vegetation growth and senescence rates by altering the phenology and peak growth 
of vegetation at flux sites. Detailed information of the sites can be found in Table S2. 

2.3. Methods 

2.3.1. Estimates of vegetation growth and senescence rates 
The vegetation growth rate is the daily mean greening rate of vegetation from SOS to POS; it thereby represents the daily growth 

speed from initial appearance of leaves to peak growth (Wang et al., 2018). The vegetation senescence rate is the mean yellowing rate 
of vegetation from POS to EOS, representing the daily speed of senescence from peak growth to dormancy. In this study, the growth 
rate was estimated by dividing the NDVI difference between SOS and POS (NDVIPOS – NDVISOS) by the time interval between SOS and 
POS (POS – SOS, green-up period), and the senescence rate was estimated by dividing the NDVI difference between POS and EOS 
(NDVIPOS – NDVIEOS) by the time interval between POS and EOS (EOS – POS, green-down period). Accurate estimates of the three 
phenological metrics (SOS, POS, and EOS) and their corresponding NDVI values (NDVISOS, NDVIPOS, and NDVIEOS) are a prerequisite 
for determining vegetation growth and senescence rates. Here, four methods, referred as the Ployfit6-Maximum of change rate 
(Ployfit6-RC), the Savitzky-Golay filter-NDVIratio (SG-NDVIratio), the Double logistic model-First derivative (DL-β), and the Harmonic 
Analyses of Time-Series-30% of amplitude (HANTS-A30), were used to determine the three key phenological metrics and their cor
responding NDVI values basing on the corresponding filtering function and threshold criterion (Table 1). Once the phenological 
metrics and NDVI are estimated by each method, daily mean vegetation growth and senescence rates were first calculated for each 
method, and then mean values were calculated by the four methods to represent final growth and senescence rates. These methods 
were also used for vegetation growth and senescence rates at flux sites. Detailed information of the methods is shown in Text S2 and 
Fig. S1. 

2.3.2. Data analysis 
Temporal changes of growth and senescence rates were determined by the Theil-Sen slope estimator and the Mann-Kendall test 

(Akritas et al., 1995; Hamed, 2008). This estimator is a stable non-parametric median-based slope estimator that is insensitive to 
outliers. To explore the mechanisms causing the daily vegetation growth (senescence) rates variations, the relationship between 
growth (senescence) rates and two phenological metrics (SOS and POS for growth rate, POS and EOS for senescence rate) and the 
corresponding NDVI values (NDVISOS and NDVIPOS for growth rate, NDVIPOS and NDVIEOS for senescence rate) that were used to 
estimate the growth (senescence) rates was calculated, and the maximum correlation coefficient between each phenological metric 
and NDVI and vegetation growth (senescence) rates was then chosen as the major determinant of vegetation growth (senescence) rates. 
Once the significant determinant (P < 0.05) is identified, the correlations between each major determinant and preseason climatic 
variables (i.e., temperature, precipitation, and radiation) were calculated to investigate how climate factors affected vegetation growth 
(senescence) rates by altering phenology and peak growth of vegetation. Taking vegetation growth rate as an example, if SOS was a 
major determinant of growth rate, various correlation coefficients between the climate variables (e.g., temperature, precipitation, and 
radiation) and SOS in the area where the growth rate was determined by SOS were first estimated by changing the numbers of months 
by one-month steps from May to January. The time window where the temperature (precipitation or radiation) was best correlated 
with SOS was defined as the preseason; the corresponding correlation coefficients between SOS and temperature (precipitation or 
radiation) during the preseason represent the impacts of the climate factor that influences vegetation growth rate by altering SOS. 
Similar estimates were made for POS, peak NDVI and EOS, with the months of climate variables used to calculate the correlation 
coefficients being selected as August-April for POS and peak NDVI and October-June for EOS. All performances were calculated at pixel 
level to characterize the spatial patterns of the linkages among climate, phenology, and vegetation growth (senescence) rates, as well 
as at each flux site. 

Table 1 
Algorithms of the four methods for extracting key phenological metrics and corresponding NDVI values.  

Methods Data filter function Threshold criterion 

Ployfit6-RC NDVIt = a0 + a1t + a2t2 + a3t3 + . + a6t6 Maximum increase and decrease in fitted NDVI curve 
SG-NDVIratio NDVIt =

1
n
∑m

i=− m
ci × NDVIr

i+t 
NDVIratio of 20% 

DL-β NDVIt =
1

1 + e

(a1 − t
a2

) −
1

1 + e

(a3 − t
a4

)
Local minima and maxima for the derivatives of fitted NDVI curve 

HANTS-A30 NDVIt = a0 +
∑n

i=1aicos(ϖi t − φi) 30% of NDVI amplitude 

Data filter function was used to reconstruct time series of NDVI, and the threshold was adopted to determine SOS and EOS from reconstructed NDVI 
time series. In the data filter function, t is the Julian date, NDVIt is the fitted NDVI value by the equation of each filter function. 
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3. Results 

3.1. Spatiotemporal variations of vegetation growth and senescence rates 

The mean vegetation growth rate (Fig. 2a) and senescence rate (Fig. 2b) during 1982–2015 showed wide spatial variability across 
the NH. Specifically, the growth rate varied from 0.1 × 10− 2 NDVI-units⋅day− 1 at low latitudes to 0.7 × 10− 2 NDVI-units⋅day− 1 at high 
latitudes, with an average of 0.4 × 10− 2 NDVI-units⋅day− 1. The high growth rates were observed in the central part of Eurasia 
(>0.8 ×10− 2 NDVI-units⋅day− 1), followed by the northeastern part of Eurasia and certain small western regions of North America 
(0.6 ×10− 2 – 0.8 ×10− 2 NDVI-units⋅day− 1). The low growth rates were mostly found at low latitudes, with an average of < 0.3 × 10− 2 

NDVI-units⋅day− 1 (Fig. 2a). The vegetation senescence rate showed lower spatial variability than the growth rate, with a range be
tween 0.1 × 10− 2 and 0.5 × 10− 2 NDVI-units⋅day− 1 and the low senescence rates at low latitudes (Fig. 2b). The growth and senescence 
rates increased with latitude, with an increase of 1.0 × 10− 4 and 0.7 × 10− 4 NDVI-units⋅day− 1 per degree latitude (Fig. 2c). Conti
nentally, both rates were greater in Eurasia than in North America (Fig. S2). Interestingly, there was a strong positive relationship 
between growth and senescence rates (R = 0.9, P < 0.05) (Fig. 2d), suggesting that a fast growth rate was generally accompanied by a 
fast senescence rate across the study area. However, the magnitude of the growth rate was greater than that of the senescence rate over 
79.8% of the study region (Fig. 2e), especially at latitudes between 50◦N and 74◦N (Fig. 2f) in areas such as Siberia, the northern and 
southeastern regions of Europe, and most of northern North America (Fig. 2e). The areas having a lower growth rate than senescence 
rate were generally distributed in the central and southeastern parts of Eurasia and on the southern and northern edges of North 
America. 

From 1982–2015, the growth (Fig. 3a) and senescence rates (Fig. 3b) accelerated over 60.0% and 61.5% of the study area, 
respectively, with 46.1% and 46.4% of the acceleration change being significant (P < 0.05), and with similar spatial distributions 
occurring in the northern and northeastern parts of Eurasia (0.4 ×10− 3 NDVI-units⋅day− 1⋅decade− 1) and most of North America 
(0.4 ×10− 3 NDVI-units⋅day− 1⋅decade− 1). In contrast, decelerations of both rates were observed in the western and southern parts of 
Eurasia and in the western and southeastern regions of North America. At hemispherical scale, both growth and senescence rates 
accelerated, with a stronger acceleration of growth rate (0.8 ×10− 4 NDVI-units⋅day− 1⋅decade− 1) than that of senescence rate 
(0.6 ×10− 4 NDVI-units⋅day− 1⋅decade− 1), especially during the period 2000–2013 (Fig. 3c). By latitude, the acceleration of growth rate 
was greater than that of senescence rate at 35–46◦N and 64–69◦N, but lower at 50–63◦N (Fig. 3d). Importantly, the growth and 
senescence rates were positively correlated over 83.6% of the study domain (Fig. 3e), and 64.2% of these correlations were statistically 
significant (P < 0.05; Fig. 3f), suggesting a parallel acceleration of vegetation growth and senescence rates across the study area. The 
acceleration of both rates was also confirmed by GPP-based estimates at the flux measurement sites, where vegetation growth and 
senescence rates accelerated at 68.8% (31 sites) and 62.2% (28 sites) of all sites, with 45.2% (14 sites; 4.1 ×10− 2 

g C⋅m− 2⋅day− 1⋅decade− 1) and 39.3% (11 sites; 3.4 ×10− 2 g C⋅m− 2⋅day− 1⋅decade− 1) of these accelerations being significant (P < 0.05). 
On the other hand, vegetation growth and senescence rates decelerated at 31.1% and 37.7% of all sites, with 21.4% (3 sites) and 17.6% 

Fig. 2. Spatial changes of mean (a) growth and (b) senescence rates over the NH during 1982–2015 averaged from the four methods. (c) Variation 
of mean growth and senescence rates with latitude. (d) Spatial relationship between growth and senescence rates. (e) Spatial distribution of dif
ferences between growth and senescence rates (growth rate minus senescence rate) and (f) their latitudinal variations. VGR and VSR represent 
vegetation growth rate and senescence rate, respectively. 
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(3 sites) of these decelerations being significant, respectively (Fig. 4). 

3.2. Spatial changes in the driving variables 

To identify the area distribution of the direct determinants of vegetation growth (senescence) rates, the correlation coefficients 
between the growth (senescence) rates and the phenological metrics, as well as the corresponding NDVIs that were used to estimate 
growth (senescence) rates were calculated. Growth rate was positively correlated with both SOS (Fig. S3a; 87.1%) and NDVIPOS 
(Fig. S3d; 98.6%), and negatively correlated with POS (Fig. S3c; 90.8%) over most of the study area. The senescence rate was positively 
correlated with both POS (Fig. S4a; 82.6%) and NDVIPOS (Fig. S4b; 98.6%), but negatively correlated with EOS (Fig. S4c; 77.9%). In 
contrast, both NDVISOS and NDVIEOS were weakly correlated with growth and senescence rates (Figs. S3b and S4d). 

To further identify areas where the growth (senescence) rates were affected by phenological metrics or NDVIs, spatial changes in 
the significant drivers on growth (senescence) rates were constructed based on the maximum correlation coefficients between growth 
(senescence) rates and phenological metrics and NDVIs (Fig. 5). The growth rate over 59.7% of the study area were mainly determined 
by NDVIPOS (Fig. 5b), with 99.8% of the correlations being positive and significant (P < 0.05) (Fig. 5a). The regions covered included 
Siberia, the inland portions of Asia and North America, and the northern part of North America, indicating that an increase in NDVIPOS 
led to an acceleration of growth rate in these regions (Fig. 3a). In contrast, the area proportions with growth rate determined by SOS 
and POS were 17.1% and 17.8%, respectively (Fig. 5a, b). 

For senescence rate, NDVIPOS also played a significant role over 48.8% of the study area (Fig. 5c, d). However, the spatial changes 
were not the same as for growth rate, with strong NDVIPOS influence mostly occurring in the inland portions of Asia and most regions of 
North America on excluding the southeastern part (Fig. 5d). The regions with senescence rate determined by POS and EOS accounted 
for 23.0% and 25.9% of the study area, respectively, exhibiting highly pronounced latitudinal variation (Fig. 5d). Specifically, the POS- 
determined areas were primarily concentrated at lower latitudes, such as the temperate band south of 60◦N in Eurasia and the 

Fig. 3. Spatial changes in the trend of (a) growth rate and (b) senescence rate during 1982–2015, with (c) the trends of hemispherical averaged 
growth and senescence rates, and (d) the trends of the various latitudinal zones. (e) The correlations between growth and senescence rates and (f) 
the corresponding area percentages. SigA and SigD represent the significant (P < 0.05) acceleration and deceleration; NSigA and NSigD represent 
the corresponding in-significant trends; SigN and SigP represent significant (P < 0.05) negative and positive correlation; NSigN and NSigP represent 
the corresponding in-significant correlation; VGR and VSR represent vegetation growth rate and senescence rate, respectively. 

Fig. 4. Trends of (a) growth rate and (b) senescence rate estimated by daily GPP data at flux sites. * represents the significant trend at P < 0.05.  
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southeastern part of North America, whereas the EOS-determined areas were mainly distributed in higher latitudes, such as Siberia and 
northern North America. Interestingly, neither NDVISOS nor NDVIEOS played a significant role on growth (5.3%) and senescence (2.4%) 
rates (Fig. 5b, d), likely due to the low vegetation productivity at the onset of spring green-up and autumn senescence. Consequently, 
NDVISOS and NDVIEOS were neglected in the following analysis. 

At flux sites, growth and senescence rates were also positively and strongly correlated with GPPPOS (Fig. 6b), confirming that 
summer peak growth is the major determinant of vegetation growth and senescence rates, although earlier SOS and EOS tended to 
cause slower growth rate and faster senescence rate (Fig. 6a, c). 

3.3. Linkages among climate, phenology, and vegetation growth (senescence) rates 

According to the spatial distribution of the major drivers on growth rate (Fig. 5b) and senescence rate (Fig. 5d), the climatic factors 
were further explored (Figs. 7 and 8). In areas with growth rate determined by SOS, the SOS was negatively controlled by preseason 
temperature in 88.0% of its total pixels (Fig. 7a, b), indicating that high temperature led to an earlier SOS, and subsequently decel
erated vegetation growth rate in these regions (Fig. 3a). Consistent with SOS, in areas with growth rate mainly determined by POS and 
NDVIPOS, these metrics were also associated with preseason temperature in over 62.3% (Figs. 7c) and 53.3% (Fig. 7e) of their total 
pixels, indicating that rising temperature can accelerate growth rate by advancing POS (Fig. 7d) and increasing NDVIPOS (Fig. 7f). Note 
that preseason precipitation also accelerated growth rate by increasing NDVIPOS in arid and semi-arid regions (23.6%) (Fig. 7e, f), 
especially in the Great Plains of central North America and in the Mongolian Plateau and Kazakh Uplands of northern Eurasia (Fig. 3a). 
However, preseason precipitation can decelerate growth rate by delaying POS in arid and semi-arid regions (18.8%) (Fig. 7c). The 
importance of radiation on growth rate by changing SOS, POS, and NDVIPOS were relatively minor, and spatially spotty over the study 
area. 

For senescence rate, in lands with senescence rate determined by POS and NDVIPOS, POS and NDVIPOS appeared controlled by 
preseason temperature over 58.3% (negative correlations; Fig. 8a) and 49.4% (positive correlations; Fig. 8c) of their total pixels. This 
implied that warming-induced higher NDVIPOS (Fig. 8d) also accelerated senescence rate, whereas warming-induced earlier POS 
(Fig. 8b) decelerated senescence rate (Fig. 3b). In POS-influenced areas, the remaining 20.2% and 21.6% of pixels were affected by 
preseason precipitation and radiation, mainly in southeastern North America, southern Europe, and southeast Asia (Fig. 8a). Notably, 
precipitation also accelerated senescence rate in arid and semi-arid ecosystems by increasing NDVIPOS, such as in the inland areas of 
Eurasia and North America (Fig. 8c; positive correlations in Fig. 8d). The influences of radiation on NDVIPOS (24.4%) appeared as 

Fig. 5. Spatial changes in (a) the maximum correlation coefficient between growth rate and key phenological (SOS and POS) and productive 
(NDVISOS and NDVIPOS) metrics, and (b) the major determinant of growth rate. Spatial distributions of (c) the maximum correlation coefficient 
between senescence rate and key phenological (POS and EOS) and productive (NDVIPOS and NDVIEOS) metrics, and (d) the major determinant of 
senescence rate. The inserted bars shown in the lower left of (b) indicate the frequency distributions of the positive and negative correlation co
efficients between growth rate and key phenological and productive metrics. The inserted bars shown in the lower left of (d) indicate the frequency 
distributions of the positive and negative correlation coefficients between senescence rate and key phenological and productive metrics. 

Fig. 6. Relationships of growth/senescence rate trends with (a) SOS/EOS, (b) GPPPOS, and (c) POS trends at flux measurement sites.  
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spatial fragments, with a tendency towards positive effects at high latitudes and negative effects in arid and semi-arid mid-latitude 
regions (Fig. 8c, d). The regions where senescence rate was determined by EOS were mainly distributed at high latitudes in Eurasia, 
with a complex spatial pattern in the impacts of climatic variables on EOS. Preseason temperature negatively regulated EOS variations 
over 45.7%, whereas radiation positively controlled EOS variations over 31.3% of their total pixels (Fig. 8e, f). Moreover, increasing 
precipitation accelerated senescence rate by advancing EOS in the remaining 23.0% of the area (Fig. 8e). 

At flux site scale, the GPPPOS, as the major driver on growth and senescence rates (Fig. 6b), was more from preseason temperature 
(Fig. 9a), whereas the impacts of precipitation and radiation were not significant (Fig. 9b, c). 

Fig. 7. Spatial changes in important climatic factor on growth rate: (a) SOS, (c) POS, and (e) NDVIPOS, and the correlation coefficient between the 
major determinant of growth rate and the dominant climatic factors: (b) SOS, (d) POS, and (f) NDVIPOS. The inserted bars shown in the lower left of 
(a, c, and d) indicate the corresponding data frequencies. 

Fig. 8. Spatial changes of important climatic factor on senescence rate: (a) POS, (c) NDVIPOS, and (e) EOS, and the correlation coefficient between 
the major determinant of senescence rate and the dominant climatic factors: (b) POS, (d) NDVIPOS, and (f) EOS. The inserted bars shown in the lower 
left of (a, c, and d) indicate the corresponding data frequencies. 

Fig. 9. Relationships of GPPPOS and preseason (a) temperature, (b) precipitation, and (c) radiation at the 45 flux sites.  
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4. Discussion 

The rates of vegetation development for green-up and green-down periods are critical ecological indicators of canopy seasonality 
shifts in response to climate change (Richardson et al., 2010; Wang et al., 2020). Remotely-sensed 15-days NDVI and flux GPP data 
revealed a parallel acceleration of vegetation growth and senescence rates during 1982–2015, with a greater acceleration of the former 
than the latter (Fig. 3c, d). These spatiotemporal variations of growth and senescence rates were strongly related to whether the three 
phenological metrics (SOS, POS, and EOS) responded equally or divergently to climate warming and to how peak growth of vegetation 
(NDVIPOS) responded to climate warming. For example, a faster growth rate at high latitudes (0.7 ×10− 2 NDVI-units⋅day− 1), which is 
in line with the maximum green-up rate by Park et al. (2020), was tightly related to later start of spring green-up at high latitude and to 
the associated shorter green-up period. This occurred because vegetation at high latitudes, which is acclimated to low temperature and 
limited photoperiod, has evolved a faster growth rate than vegetation at low latitudes to complete its annual growth sooner and make 
use of limited resources (Flynn and Wolkovich, 2018; Vitasse et al., 2018). This latitudinal dependence was more distinct in Eurasia 
than in North America (Fig. 2a). The faster senescence rate at high latitudes than at low latitudes can be directly inferred from the 
faster growth rate at high latitudes than at low latitudes because earlier vegetation dormancy at high latitudes resulting from limited 
heat and insolation availability leads to a shorter green-down period between peak growth and dormancy. This is further confirmed by 
the significant correlation between growth and senescence rates (R=0.9, P < 0.05; Fig. 2d). However, the magnitudes of growth and 
senescence rates varied with latitude, with growth rate being faster than senescence rate at latitudes north of 50 N◦ and lower at 
latitudes south of 36 N◦ (Fig. 2f). The lower growth rate than senescence rate south of 36 N◦ could be attributed to the longer duration 
of the green-up period in contrast to the green-down period (Fig. S5). 

Previous studies have showed that SOS and POS of vegetation have advanced over the NH (>30◦N) (Gonsamo et al., 2015; Jeong 
et al., 2011; Xu et al., 2016) and peak growth has enhanced globally (Huang et al., 2018). However, little is known about whether SOS 
and POS have advanced equally, or differently, on canopy development. By exploring the direct relationships of growth rate, we found 
that POS advanced more rapidly than SOS from 1982 to 2015 in regions where vegetation growth accelerated (1.7 days⋅decade− 1 vs 
0.1 days⋅decade− 1; Fig. 10a). The estimate of POS advance in this study is highly consistent with the results of 1.2 ± 0.6 days⋅decade− 1 

during 1982–2015 (Gonsamo et al., 2015), 1.7 ± 0.3 days⋅decade− 1 during 2000–2016 in the NH (Park et al., 2019) and 1.8 day
s⋅decade− 1 during 1982–2015 in the continental United States (Liu et al., 2021). In contrast, the SOS advance estimated in this study 
during 1982–2015 is smaller than the estimates before the 1990 s (Tucker et al., 2001; Zhou et al., 2001) or 2000 s (Jeong et al., 2011; 
Park et al., 2018), additionally confirming the slowdown of SOS advance with an extension of the observation period (Park et al., 2018; 
Wang et al., 2015). This larger advance of POS than SOS confirms not only the spring-ward movement of plant growth (Piao et al., 
2019; Xu et al., 2016), but also the shortened growing duration between SOS and POS by 1.5 days⋅decade− 1 (Fig. 10a) and the 
accelerated vegetation growth rate by 2.4 × 10− 4 NDVI-units⋅day− 1⋅decade− 1. These unequal advances of two phenologies may have 
considerable, but different impacts on ecosystem carbon cycle processes. For example, fewer days may be available for carbon uptake 
due to reduced growth time, or the peak of carbon assimilation may be negatively related to the advance in POS (Gonsamo et al., 
2015). Admirably, we focused on the parallel acceleration of vegetation growth and senescence rates and their underlying mecha
nisms, further studies with quantitative analyses are needed on the geographical distribution of the unequal responsiveness of these 
three phonologic metrics to climate and their consequences for ecosystem functioning. 

As a result of this shortened growing duration and the concurrent increase in vegetation peak growth (0.02 NDVI-units⋅decade− 1, 
P < 0.05) caused by the larger advance of POS than SOS, the average growth rate over the study area accelerated significantly, with a 
rate of 0.8 × 10− 4 NDVI-units⋅day− 1⋅decade− 1 (Fig. 3c), which is consistent with results from previous studies using leaf area index 
(LAI) data at global scale (Wang et al., 2018) and north of 60◦ NH (Park et al., 2020). In temperate China, Piao et al. (2022) showed a 
significant acceleration of vegetation growth only in April (7.75 ×10− 3 NDVI-units⋅decade− 1). In parallel with vegetation growth rate, 
the vegetation senescence rate has also accelerated, albeit at lower magnitude of acceleration (0.6 ×10− 4 NDVI-units⋅day− 1⋅decade− 1; 
Fig. 3c). The weaker acceleration of senescence rate compared to growth rate can be attributed to a non-significantly shortened 
green-down duration during POS and EOS (− 0.2 days⋅decade− 1, P > 0.05; Fig. 10b), resulting from the simultaneous advancement of 
POS and EOS (0.9 days⋅decade− 1 vs 0.6 days⋅decade− 1; Fig. 10b). However, the enhancement peak growth of vegetation, which was 

Fig. 10. (a) Trends of SOS, POS, green-up duration and NDVIPOS in growth rate accelerated regions. (b) Trends of POS, EOS, green-down duration 
and NDVIPOS in senescence rate accelerated regions. Green-up and green-down durations represent the time interval between SOS and POS, and 
between POS and EOS, respectively. 
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also reported globally by Huang et al. (2018), contributed largely to the senescence rate and eventually caused a parallel acceleration 
of growth and senescence rates. To the best of our knowledge, the accelerated vegetation senescence rate has not been investigated by 
hemisphere, except for temperate China where an acceleration of senescence rate occurred in October (Piao et al., 2022). Interestingly, 
it was found that vegetation in Eurasia and North America exhibited different mechanisms of acceleration of the senescence rate, with 
a strong contribution of advanced EOS in Eurasia and a strong contribution of enhanced NDVIPOS in North America (Fig. 5d). 

There was no single climatic factor during a specific period that was responsible for variations in growth and senescence rates in 
different regions of the study area. In contrast to previous studies showing that the growth rate acceleration resulted from warming 
during the green-up period (Wang et al., 2018), we emphasize that warming prior to SOS had strong impacts on the growth rate 
variation in areas where growth rate was determined by SOS. In these areas, an earlier SOS in response to 1 ℃ warming prior to SOS 
indirectly led to a 0.4 × 10− 2 NDVI-units⋅day− 1 deceleration of growth rate by prolonging the time interval between SOS and POS, 
implying the importance of the links among warming, earlier SOS, and growth rate deceleration. Another possible explanation is that 
the warming-induced earlier SOS may suppress vegetation growth rate by increasing soil water evaporation and imposing drought 
stress on vegetation growth (Buermann et al., 2013; Xie et al., 2020; Yu et al., 2018). Importantly, warming during the green-up period 
had strong influences on both growth and senescence rates in regions where these rates were dependent on POS and NDVIPOS, 
especially by increasing NDVIPOS. However, the contribution of NDVIPOS to growth and senescence rates varied spatially (Fig. 5b, d), 
highlighting the need for future studies of plant peak growth and its key drivers for projections of vegetation development. Huang et al. 
(2018) attributed the enhanced peak growth of global vegetation to expanding cropland, increasing CO2, and nitrogen deposition. 
However, we found that temperature during the green-up period contributed to the accelerating vegetation growth and senescence 
rates by enhancing NDVIPOS in approximately 53.3% and 49.4% of the study area (Figs. 7e and 8c). This was also confirmed at flux sites 
(Figs. 6b and 9a). In water-limited ecosystems, an increase in precipitation during the green-up period strongly accelerated the two 
rates still by increasing NDVIPOS, which may not have been well quantified previously (Park et al., 2015; Piao et al., 2022), if the 
different determinants of growth and senescence rates were not partitioned. In addition to NDVIPOS, advanced EOS was also 
responsible for the acceleration of senescence rate over a considerable area in the Eurasian continent (20.7%) (Fig. 5c, d). However, in 
these areas, EOS was correlated negatively and significantly with temperature during the green-down period, which is not in agree
ment with the assertion that higher temperatures could delay EOS (Keenan et al., 2014; Wu et al., 2018). The mechanisms of EOS 
changes, which can alter the senescence rate, are more complicated than for SOS changes (Wu et al., 2022; Zani et al., 2020) due to the 
interactive effects of multiple climate variables on EOS, such as daytime and nighttime temperature (Wu et al., 2018), winds (Wu et al., 
2021a), droughts (Wu et al., 2022), photoperiod (Wu et al., 2021b), and growing-season productivity (Zani et al., 2020). Combining 
the significant negative correlation between EOS and temperature in our study with the results of drought effects on EOS (Wu et al., 
2018, 2022), we speculated that climate warming in Eurasia during the green-down period has advanced EOS, probably by increasing 
drought stresses on ecosystems, further leading to an accelerated senescence rate. Radiation was another important variable decel
erating vegetation senescence at high latitudes (Fig. 8e, f) by delaying EOS due to increased photoperiod and photosynthesis. 

Given these linkages among climate, phenology, and canopy development in this study, it must be emphasized that growth and 
senescence rates are determined by multiple biological and environmental factors, and that the mechanisms linking climate-SOS- 
climate-POS/NDVIPOS to growth rate acceleration and climate-POS/NDVIPOS-climate-EOS to senescence rate acceleration must be 
properly represented for the entire vegetation growth period, instead of focusing only on warming during the green-up period or 
instantaneous maximum growth rate (Park et al., 2015). This is important because unequal advances in phenology metrics (i.e., SOS, 
POS, and EOS) caused by climate change during different time period may lead to shortened or lengthened green-up and green-down 
periods, which will be coupled with variations in summer peak growth to determine vegetation growth and senescence rates (Fig. 11). 
This assertion was also supported by GPP-based rates of vegetation growth and senescence at flux sites, with warming-induced GPPPOS 
determining the variation in growth and senescence rates and providing robust evidence of their acceleration. 

Although the previous discussion has highlighted a parallel acceleration of vegetation growth and senescence rates and the 
importance of well representation of climate-phenology-canopy development linkages, the limitations and uncertainties in the study 
should further be addressed for the benefit of future efforts exploring variations in vegetation growth and senescence rates. First, 
accurate estimates of the three phenological metrics and of peak NDVI are a prerequisite for accurately assessing changes in vegetation 
growth and senescence rates. In this study, four methods with different filtering functions and thresholds were used to extract key 
phenological metrics and peak NDVI to minimize the uncertainties in determining phenology, as was done in previous studies (Liu 
et al., 2016; Shen et al., 2014). Second, NDVI only captures the spectral reflectance of leaves in the red and near-infrared bands and 
provides information on greenness as a surrogate for photosynthesis, rather than observing actual photosynthetic activities and 
growth/senescence processes, with some biases resulting from atmospheric contamination and satellite drift (Huete et al., 2002). 
Therefore, the unit of growth and senescence rates in the present study is only a NDVI-units instead of actual biomass growth and 
biomass units (i.e., g⋅day− 1). However, it is well known that remotely sensed vegetation index is a currently unique technique for 
studying earth surface features at large spatial and long temporal scales (Shen et al., 2021; Tucker et al., 2001; White et al., 2009), and 
the consistent results obtained here between NDVI-based and GPP-based vegetation growth and senescence rates have confirmed that 
NDVI data are a very important proxy for studying long-term vegetation growth and senescence rates. It can be speculated that the 
accuracy of growth and senescence rates was markedly enhanced by the use of newly developed data sets such as satellite-derived 
solar-induced-fluorescence (SIF), although current SIF data is too short and the spatial resolution is low (Guanter et al., 2014; 
Walther et al., 2016). A third concern arises from the fact that GPP-based estimates of growth and senescence rates were performed at 
only 45 flux sites due to limited data availability for a sufficiently long time period, as discussed earlier in the section on Data. 
Especially in Asia where there is only one flux site for this study. Finally, in addition to climate-phenology-canopy development 
linkages, vegetation growth and senescence rates are also influenced by natural and human disturbances, which calls for further 
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comprehensive studies introducing the linear and nonlinear effects of multiple factors on canopy development. 

5. Conclusion 

Using two types of data (satellite-based NDVI and flux-based GPP data) and four methods, we explored the spatiotemporal vari
ability of vegetation growth and senescence rates and potential drivers in the temperate and boreal regions of the NH during 
1982–2015. We found a parallel acceleration of vegetation growth and senescence rates across the NH, with enhanced peak growth of 
vegetation in summer acting as the major driver on the parallel acceleration in most of the study area despite the existence of sub
stantial spatial heterogeneity, which may not have been well investigated in earlier vegetation development studies. However, it is 
worth noting the difficulties in characterizing the variations in growth and senescence rates using a simple climate factor in a specific 
time period because of geographical differences in links among climate, phenology, and canopy development. Such a linkage should be 
explicitly considered in canopy development studies by partitioning the major determinant of growth and senescence rates and the 
dominant climate factors causing the changes of major determinants. Moreover, the discovery of the faster advancement of POS 
compared to SOS, resulting in a shortened duration between SOS and POS and an accelerated growth rate, further emphasizes the value 
of precise description of the unequal responsiveness of different phenology indicators (SOS, POS, and EOS) to the warming climate and 
should be emphasized in future vegetation seasonality. Further studies are needed with more physiological mechanisms, based either 
on field observations with more flux sites or on manipulative experiments for a specific species. 
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Fig. 11. Conceptual illustration of the linking mechanisms climate warming-phenology shifts to growth/senescence rate acceleration in the NH. The 
solid and dotted curve represent the seasonal dynamics of vegetation greenness during the prophase and post phase of study period, respectively, 
and the points on the curve represent the key phenological metrics. Linking paths: climate factors prior to green-up onset → SOS → growth rate, 
climate factors during green-up period → POS/NDVIPOS → growth/senescence rate, climate factors during green-down period → EOS → senes
cence rate. 
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