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A B S T R A C T   

Vegetation spring phenology in mountains has undergone profound changes due to climate change. In this paper, 
which made use of the Harmonic Analysis of Time Series (HANTS) smoothing algorithm and logistic models, the 
start of the vegetation growing season (SOS) inferred from MODIS datasets with different spatial resolutions from 
2001 to 2018 was extracted. The MODIS data closest to the ground-truth observation data were then selected to 
reflect spring phenology. Combined with temperature and precipitation data, the spatio-temporal patterns and 
elevation-dependent change mechanisms of the SOS and its legacy effect on vegetation growth in the mountains 
of northwest Mongolia was examined and the following results were obtained: (1) Compared with the MOD13A1 
and MOD13A2 datasets, the high spatial resolution MOD13Q1 dataset provided stronger correlations and the 
lowest errors with ground-truth observation data. (2) In this study, the SOS usually occurred between 120 and 
152 day-of-year (DOY) with the earlier SOS detected in the low-elevation areas. Later SOS occurred mostly in the 
higher elevation areas. (3) The spatio-temporal variations in the SOS are mainly influenced by both spring 
temperature and winter precipitation, with increasing precipitation in winter tending to delay the SOS, while 
increasing spring temperature tended to advance the SOS. (4) At elevation gradient, the spring temperature 
showed a significant negative effect on SOS at all elevations, except between 1037 m and 1137 m and 3337 m to 
3437 m above sea level (ASL), with a significant positive correlation between SOS and winter precipitation 
between 1337 m and 2937 m ASL. It is expected that spring temperature is closely linked to the heat accumu
lation of plants, while winter precipitation indirectly affects the temperature in spring. (5) In lower elevation 
areas (below 1437 m ASL), the SOS was found to be negatively correlated with spring and summer growth, with 
advancing SOS leading to increased vegetation growth during spring and summer. In higher elevation areas 
(above 1437 m ASL), the SOS was significantly negatively correlated with spring growth and positively corre
lated with summer growth. Hence, delayed SOS leads to decreased spring growth and increased summer growth. 
Also, we found the effect of SOS on vegetation growth gradually weakened from spring to summer. These 
findings can help to determine the mechanisms and functional consequences of spring phenological changes in 
mountain regions.   

1. Introduction 

Vegetation phenology is the annual timing of seasonal growth phases 
in vegetation (He et al., 2015; Wang et al., 2017a). Over the past half- 
century (IPCC, 2013), climate change has significantly altered vegeta
tion phenology (Jin et al., 2012; Wang et al., 2017b), directly affecting 

carbon exchange, the dynamic balance of nutrients, biodiversity pat
terns, as well as the accompanying feedback to the climate system 
(Wang et al., 2017a). Since phenological processes are highly sensitive 
to climate change, monitoring them is an important requirement for 
studying the impact of climate change on terrestrial ecosystems (Chen 
et al., 2018). In particular, the start of the vegetation growing season 
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(SOS) is considered to be one of the most simple and effective indicators 
of climate change, because of its strong impacts on terrestrial ecosystem 
balances, and it’s an independent measure of ecosystems responses to 
climate variability (Richardson et al., 2009; Piao et al., 2011a; Cong 
et al., 2013; Shen et al., 2015; Peng et al., 2017; Yun et al., 2018; Wang 
et al., 2020). 

Mountains are considered prime indicators of global change (Deng 
et al., 2018). On the one hand, higher elevations are ideal regions to 
study responses to global climate change because they reflect drastic 
changes in many environmental factors (temperature, humidity, light, 
etc.) (Yang et al., 2018). On the other hand, global climate change is 
rapidly and significantly changing habitats in higher-elevation areas, 
which will inevitably lead to the migration of species and the movement 
of vegetation boundaries (Parmesan, 2006). Mountain ecosystems as 
sensitive regions of biological responses to climate change can reveal the 
dynamics of vegetation growth processes and reflect the response and 
adaptation of mountain ecosystems to global change (Deng et al., 2018; 
Zhu et al., 2019a). 

The mountain areas of northwest Mongolia are one of the highest 
regions in the country and are famous for their large physical elevation 
gradient and fragile ecosystems. Elevation, aspect, and slope are the 
three main topographic factors that indirectly affect the patterns of 
vegetation in mountainous areas (Huang, 2002). Among these three 
factors, elevation is important because it serves as a proxy for precipi
tation and temperature (Jin et al., 2009). In most high-latitude and high- 
altitude ecosystems, temperature has been regarded as a driving factor 
for SOS change (Piao et al., 2011a). For example, Zhu et al. (2019a) 
reported that the delay of SOS in the Funiu Mountains, China, was 
mainly attributed to decreased temperatures in March. However, 
numerous studies have also shown that precipitation strongly affects 
spring phenology (Cong et al., 2013; Shen et al., 2015). Also, Du et al. 
(2020) identified a strong dependence of spring phenology on minimum 
temperature and precipitation in the arid-mountain ecosystems of 
China. 

Previous studies have reported increased vegetation growth associ
ated with advancing SOS (Keenan et al., 2014; Zhu et al., 2019a). 
However, an earlier SOS may also increase drought stress, thus reducing 
vegetation growth (Borchert et al., 2002; Ma et al., 2015). Recently, 
Zhou et al. (2020) reported increased vegetation growth in temperate 
China correlated with advancing spring phenology. During the period 
from 1982 to 2015, the spring phenology changed by − 1.16 ± 0.25 days 
per decade, and spring and summer vegetation growth significantly 
increased by 2.6 × 10− 3 and 4.8 × 10− 3, confirming how spring 
phenology plays a key role in vegetation growth. Nevertheless, to our 
knowledge, the elevation-dependent legacy effects of spring phenology 
on vegetation growth remain unclear. Furthermore, the underlying 
mechanisms of spring phenology responses to climate change in the 
mountains of northwest Mongolia are still not understood. 

Therefore, in this study, we utilized logistic models to extract the SOS 
from Moderate Resolution Imaging Spectrometer (MODIS) datasets with 
different spatial resolutions from the period 2001 to 2018. The MODIS 
dataset that was found to be closest to the ground-truth observations was 
then used to analyze the spring phenological characteristics. Specif
ically, we consider the following questions:  

(1) What are the spatio-temporal distribution patterns of the SOS and 
its correlation with climate change during the period 2001 to 
2018 in the mountains of northwest Mongolia?  

(2) How do the SOS, climate factors, and their relationships change 
with elevation?  

(3) How does the legacy effect of SOS on vegetation growth vary with 
elevation? 

2. Data and methods 

2.1. Study area 

The study area is located in the northwest of Mongolia and consists of 
the Sajan Mountains in the north and the Hangayn Mountains in the 
south, covering from approximately 44◦ to 52◦N and 93◦ to 105◦E, with 
an area of around 0.35 million km2 (Fig. 1a). The region is characterized 
by river valleys and high mountains, where its highest peak (Tengri) is 
more than 3900 m above sea level (ASL). The area pitches up in the 
south and pitches down in the north and is one of the highest moun
tainous regions in Mongolia (Fig. 1b). The region is dominated by a 
typical temperate continental climate with extremely cold winters and 
warm summers. The mean temperature in January is below − 30℃, and 
the mean temperature in July is below 18℃ (Fig. 1c). Shaped by local 
geographical conditions, water vapor sources originate from the Arctic 
Ocean. The wetter eastern and northern parts have annual mean pre
cipitation of more than 300 mm, while the annual precipitation in the 
south and west is<100 mm (Fig. 1d). The dominant land cover types in 
the study area are natural grasslands (56.62%), shrubs (8.34%), and 
forests (11.36%, including broad-leaved forest and mixed forest) 
(Fig. 1a). 

2.2. Datasets 

2.2.1. Remote sensing data 
This work employed the Normalized Difference Vegetation Index 

(NDVI, Tucker and Sellers, 1986), defined as the ratio of the difference 
between near-infrared reflectance and red visible reflectance to their 
sum, which is among the most commonly used vegetation indices for 
studying vegetation phenology (Peng et al., 2017; Testa et al., 2018; Zhu 
et al., 2019b). The SOS in this study was extracted from a series of 
datasets, namely the MOD13Q1_NDVI, MOD13A1_NDVI, and MOD13
A2_NDVI datasets. The used data were obtained from the NASA Earth 
Observation System for the period 2001 to 2018 (https://ladsweb.mod 
aps.eosdis.nasa.gov/search/). Specifically, all three MODIS datasets 
have the same temporal resolution (16 days), but different spatial res
olutions: (1) MOD13Q1 at 250 m; (2) MOD13A1 at 500 m; (3) 
MOD13A2 at 1 km. 

2.2.2. Climate data and auxiliary data 
A climate dataset of monthly mean temperature and monthly pre

cipitation values comes from 17 meteorological stations (black triangles 
in Fig. 1b) distributed across northwest Mongolia, provided by the 
Institute of Geography and Geoecology, Mongolian Academy of Science, 
for the period 2001 to 2018. To match the start of the vegetation 
growing season, we selected temperature and precipitation (including 
the spring and winter) as climate variables. These monthly climate data 
were then interpolated and resampled to a spatial resolution of 250 m in 
an ArcGIS environment using the kriging interpolation method. The 
elevation information of the study area was derived from a elevation 
with a 90-m resolution produced by the United States Geological Survey 
(USGS, Fig. 1b). To avoid anomalous fluctuations in topography caused 
by insufficient numbers of pixels, we excluded elevations with pixel 
counts<300, which resulted in an elevation range from 937 to 3437 m 
ASL being considered in this study. We took the annual average SOS, 
temperature, and precipitation at each 100 m elevation interval during 
the period 2001 to 2018 to analyze the climate and SOS variations, and 
their relationships. 

The Global ESA CCI land cover classification map originates from the 
European Space Agency (http://maps.elie.ucl.ac.be/CCI/viewer/index. 
html). It has a spatial resolution of 300 m, and the time coverage is 
from 1992 to 2015. This paper used the Global ESA CCI land cover 
classification data for 2015. To minimize the effect of land cover type 
and snow cover, we first excluded barren land, water bodies, and 
evergreen coniferous forests (Hmimina et al., 2013). Second, pixels with 
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18 years of mean NDVI values of < 0.1 were also excluded from the 
analysis (Zhou et al., 2001; Jeong et al., 2011) (Fig. 1a). 

2.2.3. Observed phenological data 
The observed phenological data consisted of ground-truth observa

tional data (henceforth termed observations) from 8 meteorological 
stations in Mongolia between 2009 and 2016 (Table S1 and Fig. 1a). 
Each station is in a natural pasture which includes three to four herb 
species. In this study, we took the average value of the start of the 
growing season for multiple herb species as the observed phenological 
station data. However, the remote sensing dates for each station were 
defined as the mean value within a 1 km buffer zone. 

2.3. Methods 

2.3.1. Determination of remote sensing-inferred SOS 
Previous studies have reported that the cumulative NDVI-based lo

gistic model had greater potential than other methods for tracking 
vegetation phenology in the Mongolian plateau (e.g., Bao et al., 2017). 
In our study, the SOS was determined by the cumulative NDVI-based 
logistic model (Hou et al., 2014; Wu et al., 2016). This model is an 
improvement on the logistic model proposed by Zhang et al. (2003). 
First, we applied the Harmonic Analysis of Time Series (HANTS) 
smoothing algorithm smoothing to each year’s 23 NDVI datasets (i.e., 
16-day temporal resolution) and calculated the cumulative NDVI for 
each pixel of each year. The HANTS algorithm is a harmonic analysis 
based-series reconstruction method, which has been widely used to 
process time-series NDVI images and discards the noise caused by clouds 
or poor atmospheric conditions (Liu et al., 2016). Second, we fitted the 
cumulative NDVI using a four-parameter logistic model given by: 

y(t) =
c

1 + ea+bt + d (1)  

where t is the day-of-year (DOY), y (t) is the NDVI value at time t, a and b 
are fitting parameters, c + d is the maximum NDVI value, and d is the 

background NDVI value. We then calculate the rate of change in the 
curvature, RCC, as described in the following: 

RCC = b3zc

{
3z(1 − z)(1 + z)3[2(1 + z)3

+ b2c2z
]

[
(1 + z)4

+ (bcz)2]2.5 −
(1 + z)2

(1 + 2z − 5z2)
[
(1 + z)4

+ (bcz)2]1.5

}

(2)  

Z = ea+bt (3) 

Finally, we determined the SOS when the RCC reaches its first local 
maximum values (Bao et al., 2019) (Fig. 2). 

2.3.2. Validation of the remote sensing-derived SOS 
To compare the SOS results from the MODIS datasets and the ob

servations, we make use of the mean absolute error (MAE, Eq. (4)), root 
mean square error (RMSE, Eq. (5)), and the Pearson correlation coeffi
cient (R, Eq. (6)), which are calculated as follows: 

MAE =
1
n
∑n

i=1
|xi − yi| (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − yi)

2

n

√
√
√
√
√

(5)  

Rxy =

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)2

√ (6)  

where i is the serial number of the year, n is the number of samples, xi is 
the average SOS of multiple species from the observations in the i-th 
year, yi is the average remote-sensed SOS within a 1 km buffer zone in 
the i-th year, x is the multi-year average SOS of multiple species from the 
observations, and yis the multi-year average remote-sensed SOS within a 
1 km buffer zone. 

MAE and RMSE are used to measure the difference between the 

Fig. 1. (a) Geographic location, land cover types (2015), and observed phenological stations. (b) Elevation and meteorological stations. (c) Annual mean tem
perature, and (d) Annual mean precipitation in mountain of northwest Mongolia during 2001–2018. 
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observed and remote sensing-derived dates (Zhang et al., 2013; Bórnez 
et al., 2020), while the correlation coefficient reflects the variation be
tween the observed and remote sensing dates (An et al., 2020). To select 
the remote sensing data with the most effective spatial resolution, we 
identified the one that best reflects the observed phenology. 

3. Results 

3.1. Comparison of different spatial resolution MODIS datasets 

We calculated the RMSE, MAE, and correlations between the ob
servations and the MODIS datasets with different spatial resolutions 
(Fig. 3). The different MODIS datasets provided similar performances in 
terms of the acquired SOS dates, but were slightly overestimated when 
compared to the observed data, in agreement with Zhu et al. (2019b). 
The best agreement with the observations was found for the MOD13Q1 
dataset, with an R of 0.58 (p < 0.001), RMSEs of 21 days, and MAEs of 
19 days (Fig. 3a). Results for the SOS from datasets MOD13A1 and 
MOD13A2 showed a lower accuracy than MOD13Q1, with R values of 
0.53 (p < 0.001, RMSE = 22 days, MAE = 20 days) and 0.50 (p < 0.001, 
RMSE = 23 days, MAE = 21 days), respectively. In general, we found the 
strongest correlations and smallest errors from the comparisons between 
the observations and MOD13Q1, indicating that the SOS estimates from 
this higher spatial resolution dataset agreed best with the observations. 
Accordingly, we used the MOD13Q1 data to extract the spring pheno
logical characteristics and from these estimates established linear 
regression models based on the climatic factors for the study area. 

3.2. Spatio-temporal patterns of spring phenology 

Fig. 4a highlights the spatial distribution of the SOS estimates from 
2001 to 2018 over the study area. The SOS generally occurred between 
DOY 120 to 152 (82.46%, Fig. 4a), corresponding to early May to early 
June in leap years. The earliest SOS were detected in the eastern and 
southern lower elevation areas (Fig. 4a), with later SOS found mostly in 
the western and northern parts over high-elevation areas. This finding is 
consistent with the change trends of SOS with elevation (Fig. 4c). The 
trend of the SOS advancement was − 0.41 days/100 m in lower elevation 
areas below 1537 m ASL, and the delay was 1.85 days/100 m in higher 
elevation areas above 1537 m. However, the SOS overall exhibited a 
delaying trend with increasing elevation of 1.52 days/100 m (Fig. 4c). 

We also calculated the interannual variation of SOS over the study 
area (Fig. 4d). Our results show no statistically significant trends for SOS 
throughout the entire study period from 2001 to 2018 (slope = 0.02, R2 

= 0.00, p = 0.46, Fig. 4d). However, two distinct trends between 2001 
and 2009 and 2009 and 2018 can be identified. The SOS significantly 
advanced by 1.63 days/yr from 2001 to 2009, while after 2009, this 
weakened to 1.34 days/yr. From the spatial distributions of the trends in 
SOS between 2001 and 2018 across the study area (Fig. 4b), the delay in 
SOS (i.e., positive trends) was observed over 49.79% of the study area, 
and were mostly distributed in the southern part of the region. In 
comparison, the trend for advancing (i.e., negative) SOS trends 
accounted for 50.21% of the total area, which is more pronounced in the 
northern part of the study area. 

Fig. 2. (a) Example showing the determination of the SOS using the cumulative NDVI-based logistic models for the Tsetserleg (Site ID: 282) station in 2013. The 
arrows denote the calculated SOS from the fitted curves, and the corresponding horizontal axis coordinate is the day-of-year. (b) Using the same method at the same 
station and year to compare the observed SOS and remote sensing SOS with different spatial resolutions. 

Fig. 3. Correlation coefficients between the different MODIS datasets and observations: (a) MOD13Q1, (b) MOD13A1, and (c) MOD13A2. The dotted lines indicate 
the 95% confidence intervals. 
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3.3. Relationships between spring phenology and climate factors from 
2001 to 2018 

The correlation coefficients between the inferred SOS and climate 
factors between 2001 and 2018 are presented in Table 1. The SOS is 
significantly negatively correlated with both spring temperature and 
winter temperature, where for the winter temperature (R = − 0.472, p =
0.048, Table 1), it indicates that the warming in winter advances the 
SOS. Advancing SOS dates were found over more than 92% of the study 
area, with around 20% of the pixels showing statistically significant 
advancement, which were distributed over most areas, except for the 
high elevation parts (Fig. 5b). The correlation coefficient between the 
SOS and spring temperature (R = − 0.606, p = 0.008, Table 1) indicates 
that the increased spring temperatures advanced the SOS, which was 
observed across 97% of the study area, and about 36% of these 

correlations were statistically significant (Fig. 5a). We, therefore, note 
that the SOS was more strongly affected by spring temperature than by 
winter temperature, suggesting that spring temperature had a promi
nent influence on SOS in this study area. 

By contrast to temperature, the SOS was positively correlated with 
both spring precipitation and winter precipitation between 2001 and 
2018 (Table 1). The SOS shows a statistically significant positive cor
relation with winter precipitation, with R = 0.628 (p = 0.005, Table 1), 
which demonstrated that increased precipitation tends to delay the SOS. 
The winter precipitation was positively associated with the SOS for 
about 93% of the study area, distributed over most parts of the study 
area, with those correlations being significant covering about 27% of 
these areas (Fig. 5d). Meanwhile, the spring precipitation showed no 
overall significant positive correlation with SOS (R = 0.332, p = 0.178, 
Table 1), while spatially, a positive correlation between SOS and spring 
precipitation was observed at more than 73% of the pixels, with around 
9% of these being statistically significant, mainly distributed in the 
western parts of the study area (Fig. 5c). On the other hand, the corre
lations between SOS and winter precipitation were generally positive 
(more than 93% of the study area) and more strongly so than the spring 
precipitation, suggesting winter precipitation was a driving factor for 
SOS in the study area. 

3.4. Elevation-dependent correlations between spring phenology and 
climate factors 

Fig. 6 shows the linear trends of the climate factors during the period 
2001 to 2018 for every 100 m elevation spacing, where all show sta
tistical significance (p < 0.01). Between 937 and 2037 m ASL, the 

Fig. 4. Spatial distribution of (a) the SOS and (b) trends in the SOS over the study area from 2001 to 2018. (c) Change trends in SOS with elevation. (d) Interannual 
variations in SOS in the study area from 2001 to 2018. The error bars show standard deviations (SD) from the pixels within each elevation range. 

Table 1 
Correlation coefficient between SOS and climate variables between 2001 and 
2018 (* and ** indicate P < 0.05 and P < 0.01, respectively).  

Climate factors Variable Correlation 
coefficient (R) 

P_value 

Spring precipitation 
(Ps) 

March-May  0.332  0.178 

Winter precipitation 
(Pw) 

December(last year)– 
February  

0.628  0.005** 

Spring temperature 
(Ts) 

March-May  − 0.606  0.008** 

Winter temperature 
(Tw) 

December(last year)– 
February  

− 0.472  0.048*  

L. Mei et al.                                                                                                                                                                                                                                      
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Fig. 5. Spatial patterns of the correlations between the SOS and (a) spring temperature, (b) winter temperature, (c) spring precipitation, and (d) winter precipitation 
and their subsequent significance (i.e., when p < 0.05). 
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temperature and precipitation trends in spring show a decrease with 
increasing elevation, by − 0.54℃/yr and − 0.14 mm/yr per 100 m, 
respectively. However, these trends reverse with higher elevations be
tween 2037 m and 3437 m ASL, with values of around 0.21℃/yr and 
2.94 mm/yr per 100 m, respectively. Meanwhile, the winter precipita
tion showed a trend of decreasing values between 937 m and 3437 m 
ASL, with a value of 0.97 mm/yr per 100 m elevation, and the winter 
temperature trend with increasing elevations reversed from decreasing 
by − 0.59℃/yr per 100 m (937 to 2937 m ASL) to increasing by 0.35℃/ 
yr per 100 m (2937 to 3437 m ASL). 

The relationships between SOS and climate factors exhibited 
different patterns with elevation (Fig. 7). The SOS showed a negative 

correlation with the temperature at all elevations, suggesting that 
decreasing temperatures lead to delayed SOS dates. Specifically, the 
correlations between SOS and spring temperature were strongly nega
tive and statistically significant, except for the elevation ranges from 
1037 to 1137 m and 3337 to 3437 m ASL. The winter temperature was 
negatively correlated with the SOS, with the correlation coefficients 
decreasing with increasing elevation, being statistically significant be
tween 937 m and 1937 m ASL. Meanwhile, the SOS was positively 
correlated with precipitation at all elevations, indicating that increasing 
precipitation delayed the SOS. Among them, the relationships between 
SOS and winter precipitation showed a stronger positive significance 
between 1337 m and 2937 m ASL (Fig. 7), with the correlation co
efficients decreasing with increasing elevation. Meanwhile, the SOS is 
significantly positively correlated with spring precipitation at higher 
elevations above 2737 m ASL. We have therefore observed that there is a 
strong dependence of SOS on spring temperature and winter precipita
tion with elevation. 

3.5. Elevation-dependent relationships between spring phenology and 
growth in spring and summer 

Based on the MOD13Q1_NDVI dataset, we used monthly average 
NDVI values to delegate spring (March to May) and summer growth 
(June to August). Fig. 8 highlights the relationship between spring and 
summer growth with SOS with respect to elevation. The results show 
that the SOS was strongly negatively correlated with spring growth at all 
elevations, with all being at a statistically significant level of at least p <
0.05 (Fig. 8). The correlation coefficients increase with elevation be
tween 1537 m and 2937 m ASL, but then decreased over higher eleva
tions from 2937 m to 3437 m ASL. From the correlation coefficients 
between SOS and summer growth (Fig. 8), no statistically significant 
coefficients between SOS and summer growth were negative below 
1437 m ASL, but above this elevation the coefficients between SOS and 
summer growth were positive. Between 1437 m and 2937 m ASL, the 
coefficients between SOS and summer growth increased with elevation 
and reached statistically significant levels between 2337 m and 2937 m 
ASL. However, these correlations again decreased between 2937 m and 
3437 m ASL. In addition, we observed that the absolute values of the 
coefficients between the SOS and spring growth were greater than those 
between SOS and summer growth at all elevations, indicating the effect 
of the SOS on spring growth was substantially greater than on summer 
growth. 

Fig. 6. Change trends of temperature and precipitation for spring (a) and 
winter (b) for each elevation interval in the study area. The circle indicates that 
the change trend has reached a statistically significant level of p < 0.01. 

Fig. 7. The correlation coefficients of the SOS with temperature and precipi
tation with elevation in the study area. * indicates significance with p < 0.05, 
** indicates significance with p < 0.01. 

Fig. 8. Correlation between the SOS and spring and summer growth as a 
function of elevation. * indicates significance at p < 0.05, ** indicates signifi
cance at p < 0.01. 
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4. Discussion 

4.1. The response of spring phenology on climate change in the mountains 
of northwest Mongolia 

Our results indicate that between 2001 and 2018, the SOS remained 
relatively stable, with no clear trends for ecosystems in the mountains of 
northwest Mongolia, which generally agrees with the findings of pre
vious studies (Cong et al., 2013; Wang et al., 2014; Zhou et al., 2016; Du 
et al., 2020). However, the SOS interannual change displays two distinct 
stages over this period: First, the SOS significantly advanced by 1.63 
days/yr before 2009, after which this trend weakened where it showed 
an advance of 1.34 days/yr. This is consistent with the findings of Zhou 
et al. (2016), which may be related to in winter precipitation over the 
study area during this period (Fig. S3). 

Our results show that the SOS occurs earlier at lower elevations, and 
later at higher elevations, in agreement with Shen et al. (2014) and Piao 
et al. (2011a). Additionally, we also found the changes in SOS dates are 
closely related to changes in both winter precipitation and spring tem
perature (Fig. 5 and Fig. 7). In our study area, variations in spring 
temperature played a significant role between 2001 and 2018 (Table 1 
and Fig. 7). Warmer spring temperatures tended to advance the SOS, as 
reflected in the significant negative correlation between these parame
ters in most parts of the study area (Fig. 5a). Meanwhile, the relation
ships between SOS and spring temperature were also strongly 
significantly negative within all elevation ranges considered, except for 
from 1037 m to 1137 m, and 3337 m to 3437 m ASL. Because warmer 
temperatures during spring enhanced the accumulation of heat needed 
for budburst and leaf expansion, this resulted in the advancement of the 
resumption of active growth (He et al., 2018; Wang et al., 2017b; Yu 
et al., 2010). Furthermore, our results indicate that decreasing winter 
temperatures played a negative role in the advancement of SOS, espe
cially at lower elevations (937 to 1937 m ASL). Plants in high-elevation 
regions have adapted to these areas’ cold climates as a result of their 
long-term exposure to lower temperatures (Du et al., 2019), whereas 
plants often have a low resistance to frost in low-elevation areas, hence, 
to minimize the danger of freezing injury at lower temperatures, they 
may slow or postpone phenological processes, and thus delay the SOS 
(Richardson et al., 2013; Du et al., 2019). 

We also found that winter precipitation explained a substantial 
portion of the variability in SOS, with our analysis showing significant 
positive responses of the SOS to winter precipitation over most of the 
study area, consistent with previous findings (Yun et al., 2018). Like
wise, the increasing winter precipitation delayed the SOS in the 
following spring at elevation (Fig. 7). Because winter precipitation is 
frequently in the form of snow, an anomalously widespread snow cover 
will reduce the absorption of solar radiation and requires more heat to 
melt the snow and to warm the soil, thus potentially delaying the SOS 
(Wang et al., 2017a; Xie et al., 2017; Yun et al., 2018). Furthermore, 
scattered portions of the study area at elevations above 2737 m ASL saw 
the SOS being significantly positively correlated with spring precipita
tion, indicating that wet springs can delay the SOS. A possible reason for 
this is that snow and glacier ice distributed at high elevations can slow 
down climate warming by reflecting solar radiation and consuming 
energy due to snow or ice melting (Tao et al., 2015), thus possibly 
delaying the SOS. Another possible explanation is that increasing spring 
precipitation (2.94 mm/yr per 100 m, Fig. 6) leads to a decrease in 
temperature, resulting again in a delay in the SOS. In general, our results 
consequently support the notion that the phenological events of most 
mountainous regions are not solely driven by spring temperature, but 
also by winter precipitation. 

4.2. The legacy effects of spring phenology on vegetation growth with 
variation in elevation 

Previous studies have reported legacy effects of SOS that have been 

found to both increasing and decreasing vegetation growth (Piao et al., 
2011b; Wang et al., 2011). Our results showed that the SOS affects 
vegetation growth during spring and summer with respect to elevation, 
consistent with the results of Zhou et al (2020) for temperate China. The 
SOS was significantly negatively correlated with spring growth at all 
elevations, but for the summer growth, the SOS was negatively corre
lated with summer growth below 1437 m ASL and positively correlated 
with summer growth above 1437 m ASL. In low-elevation areas (below 
1437 m), we observed SOS to be negatively correlated with spring and 
summer growth, and reached a statistically significant level with spring 
growth. This is likely because temperatures in lower-elevation areas are 
greater than those at higher elevations. This sees the relatively high 
temperatures advancing the SOS (− 0.41 days/100 m), which extends 
the growing season’s length, thus promoting vegetation growth. From 
1437 m to 2937 m ASL, the SOS is negatively correlated with spring 
growth and the resulting correlation coefficients increase with elevation 
(Fig. 8). Because temperature and precipitation delay SOS (1.85 days/ 
100 m) with increasing elevation, a delayed SOS may result in the 
delayed maturation of leaves, leading to lower rates of photosynthesis 
and vegetation growth in spring (Zhang et al., 2004; Zhou et al., 2020). 
Regarding summer growth, the SOS is positively correlated with sum
mer growth between 1437 m and 2937 ASL, with the correlation co
efficients increasing with elevation. Other studies have found that the 
length of the growing season was markedly shortened with increasing 
elevation (Deng et al., 2018; Zhu et al., 2019a). Meanwhile, the SOS was 
delayed with increasing elevation, which may lead to increasing vege
tation growth in summer, while in this work, the correlation coefficients 
of the SOS with spring and summer growth were weaker at higher ele
vations (above 2937 m ASL). Aerts et al. (2006) and He et al. (2015) 
have demonstrated that the start of the vegetation growth of cold biomes 
seems to be particularly sensitive to climate warming at higher eleva
tions. This may be an effect of SOS which has been weakened by dras
tically increased temperatures and increased precipitation (Fig. 6 and 
Fig. 4c). In addition, our results showed that the correlation coefficients 
between SOS and spring growth were greater than those between SOS 
and summer growth (Fig. 8). Considering elevation, the effect of SOS is 
reduced during the growing season from spring to summer. 

5. Conclusions 

In this study, we compared three MODIS datasets with different 
spatial resolutions and selected the MODIS data closest to the observa
tions to represent the spring phenological characteristics. Combined 
with climate factors, we analyzed the spatio-temporal patterns and 
elevation change mechanisms of the SOS and its legacy effect on vege
tation growth in the mountains of northwest Mongolia. The MOD13Q1 
data (250 m) compared to the MOD13A1 (500 m) and MOD13A2 (1 km) 
datasets, confirming that the high-spatial-resolution data had the better 
potential for tracking and predicting phenology. Considering the 
regional and elevation gradient, the variation of SOS is mainly influ
enced by spring temperature and winter precipitation where increasing 
spring temperatures tend to advance the SOS, while increasing precip
itation in winter tends to delay the SOS. For the vegetation growth, in 
lower elevation areas (below 1437 m ASL), the advancing SOS increases 
vegetation growth during spring and summer. However, a delay in SOS 
decreases spring growth and increases summer growth in high-elevation 
areas. The effect of the SOS weakens as the growing season progresses 
from spring to summer. 

The results of this study will assist in gaining a better understanding 
of the spatio-temporal patterns and elevation dependencies of the 
change mechanisms of SOS in the mountains of northwest Mongolia, as 
well as showing the importance of winter precipitation for spring 
phenological development in mountainous areas. Also, this study allows 
a description of the functional consequences of SOS variations on 
vegetation growth. Although temperature and precipitation play 
important roles in vegetation spring phenology, the mechanisms of 
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vegetation phenological response to climate change are very complex 
and are likely to be affected by other environmental factors, such as 
snow cover, sunshine duration, and soil moisture. Therefore, in future 
studies, it will be necessary to examine how these environmental factors 
impact upon the spring phenological stages. Additionally, the phenology 
of mountain vegetation, which is a significant indicator of climate 
change (Zhu et al., 2019). Thus, it is equally important to understanding 
the dynamics of the change in both the end of the growing season (EOS) 
and length of the growing season (LOS) in mountains, which will be 
focus of our future research. 
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Abstract: Water use efficiency (WUE) reflects the balance between carbon assimilation and water 

consumption in terrestrial ecosystems. Considering the fragile conditions of global water resources, 

the evaluation of regional WUE variation characteristics and response mechanisms is critical for 

promoting sustainable ecological development and water resource utilization. Based on gross pri-

mary productivity (GPP) and evapotranspiration (ET) datasets, combined with vegetation and me-

teorological data, this study examined the spatiotemporal variations, annual variation contribution 

rate, and driving mechanism of WUE in Inner Mongolia from 2001 to 2020. The main results are as 

follows: (1) The interannual and spatial variations of GPP, ET, and WUE all exhibited increasing 

trends, with WUE increasing in approximately 70% of the region and significantly increasing in 

22.35% of pixels exhibiting a significant increase. Areas with the most significant increases were 

located in the Horqin sandy land and Mu Us sandy land. (2) The highest WUE values were observed 

in the summer season, followed by autumn and winter, and the lowest in spring. (3) Among all 

vegetation types, the typical steppe ecosystems contributed most to the interannual variability 

(IAV) of GPP, ET, and WUE, with values of 169.89%, 141.09%, and 193.42%, respectively. While the 

coniferous forest contributed least or negatively to GPP, ET, and WUE IAV, with values of −36.28%, 

28.20%, and −32.86%, respectively. (4) The primary driver of WUE variation was found to be GPP, 

which contributed 59.36%, mainly in the central and western regions. The remaining 40.64% was 

attributable to ET, concentrated in the northeast region. (5) Human activities significantly affected 

WUE, with a contribution (about 53.52%) larger than that of climate change (nearly 46.48%). In-

creased precipitation improves vegetation WUE and is the most important climate factor influenc-

ing WUE variations. These findings will aid the formulation of vegetation protection and water 

resource management strategies in water-stressed areas. 

Keywords: water use efficiency; interannual variability (IAV); relative contribution; sensitivity 

 

1. Introduction 

The carbon dioxide (CO2) level in the atmosphere has increased exponentially since 

the industrial revolution [1–3]. The continuous increase of atmospheric CO2 had a signif-

icant effect on the patterns of the carbon–water cycle and the carbon–water balance of 

exchanges in terrestrial ecosystems, posing serious threats to ecological sustainability and 

human survival [1]. Water use efficiency (WUE) is a common variable for measuring the 

interaction of carbon assimilation and water loss in terrestrial ecosystems, it is also an 

important parameter reflecting the sensitivity of ecosystems to climate change [4–6]. The 

vegetation WUE consists of two main components: gross primary productivity (GPP) and 
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evapotranspiration (ET) [6–8]. GPP is the amount of carbon fixed by terrestrial vegetation 

via photosynthesis and represents the largest carbon flux in the global terrestrial carbon 

cycle [9–11]. ET is an important water vapor flux that refers to the water used by an eco-

system through transpiration or surface evaporation and influences water and energy dis-

tribution between the land surface and the atmosphere [12]. The study of vegetation WUE 

can not only provide an in-depth understanding of ecosystem change patterns but also 

explain how ecosystems respond to climate changes and water resources, laying the 

groundwork for promoting vegetation productivity and ecological construction in water-

stressed areas. 

Numerous studies have shown that the variability of WUE is related to a variety of 

factors, including human activities (vegetation greenness) [13–15], climate factors [16,17], 

CO2 fertilization and N deposition [18], canopy conductance [19], and drought [6]. In arid 

ecosystems, WUE variability is mostly influenced by human activity and climate factors 

[20–22]. For example, Bai et al. [21] found that WUE variations in the arid ecosystems of 

China were controlled by precipitation. Xu [22] suggested that precipitation promoted 

vegetation WUE in dryland regions of China. Du et al. [20] pointed out that WUE in north-

ern China presented a dominant increasing trend and WUE variability was primarily con-

trolled by climate factors (precipitation, temperature, and solar radiation), with climate 

accounting for 84% and human activities accounting for approximately 16%. Neverthe-

less, Guo et al. [5] found that human activities played a critical role in the increase of WUE 

in the Beijing–Tianjin Sandstorm Source region, with a relative contribution of 88.2%, fol-

lowed by precipitation and temperature, which contributed only 11.8%. The impact of 

climate change and human activity on WUE in water-limited regions remains debatable. 

Inner Mongolia is the third largest province and region in China (12.3% of China’s 

land area); it has vast grassland resources and mineral resources, which are important for 

the ecological environment protection and economic growth of China [23–25]. However, 

located in arid and semi-arid environments, Inner Mongolia has a fragile ecological envi-

ronment and uneven distribution of water resources, due to which, it is extremely sensi-

tive to climate change [26–28]. With the country’s rapid economic development and in-

creasing level of urbanization, the water resources and terrestrial biodiversity of Inner 

Mongolia have seen a substantial decline in recent decades [23–25,29–33]. In response, the 

Chinese government has been implementing many large-scale ecosystem restoration and 

governance efforts since the 1950s. To use limited water resources sensibly and effectively, 

a more comprehensive and in-depth study of the WUE characteristics in water-limited 

areas is necessary. Therefore, this study selected Inner Mongolia as the study area and 

quantitatively assessed the variation characteristics of WUE and its response mechanism 

to human activity and climate change by combining climate data (temperature, precipita-

tion, and solar radiation). The specific main objectives are: (1) to explore the spatiotem-

poral variations and trends of regional GPP, ET, and WUE; (2) to investigate the seasonal 

variations characteristics of GPP, ET, and WUE; (3) to depict the variations in GPP, ET, 

and WUE for different vegetation types and their contribution to IAV; (4) to determine 

the sensitivity and contribution of GPP and ET to WUE IAV; and (5) to evaluate the posi-

tive–negative effects of human activity and climate on variations in WUE. The findings 

are expected to provide a reference basis for future rational planning of vegetation resto-

ration and water resource management. 

2. Materials and Methods 

2.1. Study Area 

Inner Mongolia (Inner Mongolia Autonomous Region) is located on the northern bor-

der of China (37°24′–53°23′N, 97°12′–126°04′E) and it represents the third largest province 

and region in China, with an area of 118.3 × 104 km2. Inner Mongolia belongs to a temper-

ate continental climate with cold winters and hot summers. It has complex and diverse 

landforms, with the terrain inclining from southwest to northeast, sequentially covering 
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the Mu Us sandy land, Otindag sandy land, Horqin sandy land, and Da Hinggan Ling 

Mountains (Figure 1c). As an important animal husbandry production base in China, In-

ner Mongolia has rich and diverse vegetation types, with grassland being the most prev-

alent vegetation type, including meadow steppe, typical steppe, and desert steppe, which 

account for approximately 46.13% of the total area (Figure 1b). 

 

Figure 1. Overview of the study region, (a) Geographical location and meteorological stations, (b) 

Vegetation types, and (c) Digital elevation model (DEM). 

2.2. Data Sources 

In this study, the global OCO-2-based solar-induced chlorophyll fluorescence prod-

uct (GOSIF) GPP and the Global Land Evaporation Amsterdam Model version 3.5a 

(GLEAM) ET remote sensing products were used to calculate WUE. GOSIF GPP (2001–

2020) is a long-term series dataset based on solar-induced chlorophyll fluorescence 

(http://data.globalecology.unh.edu/, accessed on 15 May 2022), with a spatial resolution 

of 0.05°and 8-day time step [34]. GLEAM product ET is estimated from observed precipi-

tation, surface soil moisture, and vegetation moisture content as the control conditions by 

using Priestley-Taylor algorithms and combining multi-source remote sensing data 

[35,36]. The GLEAM 3.5a datasets (https://www.gleam.eu/, accessed on 15 May 2022) span 

from 1981 to 2020, with a spatial of 0.25°and a daily time step. ET products were 

resampled to 0.05° to unify the spatial resolution of the ET and GPP products. 

Meteorological datasets include daily temperature, precipitation, and sunshine hours 

data from the China Meteorological Data Network (http://data.cma.cn/, accessed on 15 

May 2022). This network covers meteorological data from 118 stations in Inner Mongolia 

from 2001 to 2020, as shown in Figure 1a. Using the FAO Penman–Monteith formula, the 

sunshine hours were used to calculate solar radiation data [37]. These data were interpo-

lated to a spatial resolution of 0.05° × 0.05 using the kriging interpolation method. Vege-

tation type data were derived from a 1:1000,000 raster map of vegetation type of Inner 

Mongolia with a spatial resolution of 0.0083°. In this map, the study area is divided into 9 
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vegetation types. In this study, the Gobi Desert was excluded because its vegetation was 

relatively sparse and some areas even had no vegetation cover. 

Elevation Data (DEM) with a resolution of 90 m and land use/land cover data (2000, 

2010, and 2020) with a resolution of 1 km were drawn from the Resource and Environ-

mental Science Data Platform of the Chinese Academy of Sciences (https://www.resdc.cn/, 

accessed on 15 May 2022). The land use data mainly included 6 primary land use types 

(Cropland, Forest, Grassland, Water bodies, Built-up land, and Unused land), and 25 sec-

ondary land use types. Considering the characteristics of the wide distribution of grass-

lands in Inner Mongolia, the land cover types were reclassified into 9 categories, namely 

cropland, forest, high-coverage grassland, medium-coverage grassland, low-coverage 

grassland, water bodies, built-up land, sandy land, and unused land. The degree of land 

use dynamics was also calculated for each league or city during the study period. A single 

dynamic degree reflecting the change of a specific land use type was assessed in the study 

area through the study period. The specific calculation formula is available in Wang et al. 

[38]. 

2.3. Methods 

2.3.1. Ecosystem Water Use Efficiency 

WUE (gC m−2 mm−1) is defined as the amount of carbon uptake per unit of water loss 

[39–41], whereas GPP (gC m−2 yr−1) and ET (mm yr−1) are frequently used to express carbon 

uptake and water loss at the ecosystem scale [17,42,43]:  

WUE =
GPP

ET
 (1)

2.3.2. Trend Analysis 

The Theil–Sen median trend analysis is a non-parametric method for estimating time 

series trends, and it is immune to outliers [44,45]. The Mann–Kendall (M–K) test is a non-

parametric method for assessing the significance of time series trends [46,47]. The two 

methods are often combined to determine the change trends of vegetation in time series 

data. The Theil–Sen median trend analysis is expressed as Equation (2): 

Sen = Median �
X�−X�

j − i
� (2)

Sen > 0 denotes an increasing trend in X; Conversely, it denotes a decreasing trend. 

The Mann–Kendall test is expressed as Equation (3): 

S = � � sgn(X� − X�)

�

�����

���

���

 (3)

where, n is the time series length, �� and �� are the data values in the time series i and j 

(j > i), respectively. The ���(�� − ��) is calculated as Equation (4): 

sgn(X� − X�) = �

+1, if X�−X� > 0

0,     if X�−X� > 0

−1, if X�−X� > 0

 (4)

The standard normal test statistic Z is calculated using Equation (5): 

Z =

⎩
⎪
⎨

⎪
⎧

S − 1

�s(S)
, S > 0

0,        S = 0
S + 1

�s(S)
, S < 0

, s(S) =
n(n − 1)(2n + 5)

18
 (5)
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in which, a positive or negative Z indicates an increase or decrease. |�| > �. �� indicates 

a significant increase (or decrease) in the time series at a confidence level of α = 0.05. 

2.3.3. Calculating the Contribution of Interannual Variability (IAV) 

The contribution of IAV of a grid cell or vegetation type j to regional WUE (GPP or 

ET) IAV is defined as [48]: 

f� =
∑

x��|X�|

X�
�

∑ |X�|�

 
(6)

where, ��� is the WUE anomaly (departure from a long-term trend) of j vegetation types 

in year t; �� is the regional WUE anomaly, so that �� = ∑ ���� . By this definition, �� is the 

average relative anomaly 
���

��
�  for regional j weighted with the absolute global anomaly 

|��|. 

2.3.4. Multiple Regression Residual Analysis  

Residual analysis is the most popular method for investigating the different effects 

of climate and human activities on vegetation [49,50]. In this study, changes in WUE over 

the study period were hypothesized to be influenced solely by climate change and human 

activities. We established multiple regression models between WUE and climatic varia-

bles (temperature, precipitation, and solar radiation) for each pixel and evaluated them 

using F-statistics. WUE during the study period was then predicted using the multiple 

regression models to represent the influence of only climate change. The difference be-

tween the observed WUE (WUEobs) and predicted WUE (WUEpv) was then taken as the 

response of human activities on WUE, namely residual WUE (WUERV). The equations for 

calculating these values are as follows:  

WUE�� = a × T + b × P + c × R + d (7)

WUE�� = WUE���−WUE�� (8)

where, P, T, and R represent precipitation, temperature, and solar radiation, respectively; 

and a, b, and c are regression coefficients of multiple linear regression, respectively. Based 

on the standards presented in Table 1, the main driving factors of variations in WUE were 

identified and the positive and negative effects of climate change and human activity on 

WUE were estimated. 

Table 1. Standards for identifying the main drivers of WUE change and methods for calculating 

contribution rates. 

Sen 

(WUEobs) 

Driving 

Factors 

Driver Division Standard 
The Contribution Rate of 

Drivers (%) 

Sen(WUEPV) Sen(WUERV) 
Climate 

Change 

Human 

Activity 

>0 

PV&RV >0 >0 
Sen(WUE��)

Sen(WUE���)
 

Sen(WUE��)

Sen(WUE���)

PV >0 <0 100 0 

RV <0 >0 0 100 

<0 

PV&RV <0 <0 
Sen(WUE��)

Sen(WUE���)
 

Sen(WUE��)

Sen(WUE���)

PV <0 >0 100 0 

RV >0 <0 0 100 
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2.3.5. Relative Contribution Statistical Method 

Multiple regression linear models have been developed between multiple independ-

ent and dependent variables to assess the degree to which the various independent vari-

ables explained the dependent variable [17,51,52]. This method computes the linear rela-

tionship between independent and dependent variables and employs standard regression 

coefficients to express the sensitivity of the independent variable to the dependent varia-

ble [17,52]. The ratio of the absolute value of the regression coefficient of each variable to 

the sum of the absolute values of all regression coefficients can be used to calculate the 

relative contribution rate of an independent variable to the dependent variable [51]. 

3. Results 

3.1. Spatial and Temporal Variations in GPP, ET, and WUE 

Regarding the interannual variations of GPP, ET, and WUE in Inner Mongolia from 

2001 to 2020 (Figure 2), regional GPP showed a significant increasing trend (6.28 gC m−2 

yr−1 a−1, p < 0.01), with a mean of 481.51 gC m−2 yr−1. The lowest and highest GPP were 

observed in 2001 (412.26 gC m−2 yr−1) and 2018 (561.38 gC m−2 yr−1), respectively. ET also 

showed a significant increasing trend (2.70 mm yr−1 a−1, p < 0.01), with a mean of 327.77 

mm yr−1, but its increasing trend was significantly smaller than that of GPP. The lowest 

and highest ET were observed in 2008 (290.87 mm yr−1) and 2015 (371.18 mm yr−1), respec-

tively. Under the combined action of GPP and ET, regional WUE also showed a significant 

increasing trend (0.006 gC m−2 yr−1 a−1, p < 0.01), and annual WUE ranged between 1.16 and 

1.60 gC m−2 mm−1, with a mean of 1.35 gC m−2 mm−1. Its interannual values fluctuated 

widely from 2001 to 2020, with the lowest and highest values in 2001 (1.16 gC m−2 mm−1) 

and 2018 (1.60 gC m−2 mm−1), respectively. 

 

Figure 2. Interannual variations of (a) GPP, (b) ET, and (c) WUE in Inner Mongolia from 2001 to 

2020 (The red shades highlight the 95% confidence interval. The black lines are time series of re-

gional annual GPP, ET, and WUE, while the red dashed lines represent the trend). 

As shown in Figure 3, WUE and GPP exhibited similar spatial patterns, the higher 

values in the northeast and lower values in the southwest. In contrast, ET exhibited a spa-

tial pattern of decreasing from east to west and south to north. From the spatial distribu-

tion of their trends (Figure 3), GPP, ET, and WUE all exhibited an increasing trend. Re-

garding GPP, approximately 96.39% of the pixels showed an increasing trend, of which, 

areas with significant increase accounted for 48.89% of all pixels, mainly distributed in the 

eastern regions and Mu Us sandy land in the southwest. Regarding ET, approximately 

87.97% of the pixels showed an increasing trend, and areas with significant increases ac-

counted for 39.91% of the total pixels and appeared in the central and eastern parts of the 

study area. Nevertheless, 12.03% of the area showed a slight decrease, scattered in the 

northeast and western parts. The WUE statistics show that the increase and decrease 

trends accounted for 70% and 30%, of which, areas with significant increase and decrease 

accounted for approximately 22.35% and 2.63% of all pixels. Areas with significant in-

creases were mainly located in the Horqin sandy land in the southeast and the Mu Us 

sandy land in the southwest, whereas areas with significant and slight decreases were 



Remote Sens. 2022, 14, 5422 7 of 20 
 

 

concentrated in the central part of Xilin Gol league and the Da Hinggan Ling Mountains 

in the northeast. 

 

Figure 3. Spatial differences of annual average (a) GPP, (c) ET, (e) WUE, and (b,d,f) their trends 

(significance levels of 0.05) in Inner Mongolia from 2001 to 2020. 

3.2. Seasonal Characteristics of GPP, ET, and WUE  

WUE exhibited a generally consistent spatial pattern across the four seasons, with 

higher values in the northeast and lower values in the southwest (Figure S1). The seasonal 

WUE values in Inner Mongolia exhibited the overall characteristics of summer > autumn 

> winter > spring (Figure 4). Among the four seasons, the highest mean value (1.77 gC m−2 

mm−1) was observed in summer (June–August), with minimum and maximum values of 

0.02 and 6.89 gC m−2 mm−1, respectively. The mean WUE values in autumn (September–

November) and winter (December–February) were 1.36 gC m−2 mm−1 and 0.78 gC m−2 

mm−1, respectively. More specifically, 50% of WUE values in autumn were primarily con-

centrated between 0.89 and 1.71 gC m−2 mm−1, while 50% of WUE values in winter were 

primarily concentrated between 0.16 and 1.18 gC m−2 mm−1. However, the lowest mean 

WUE value was observed in spring (March-May) at 0.40 gC m−2 mm−1, with minimum and 

maximum values of 0 to 2.24 gC m−2 mm−1, respectively. For GPP, the highest mean value 

was observed in summer, with a value of 353.82 gC m−2 yr−1, the 50% of GPP values in 

summer were primarily concentrated between 131.39 and 562.15 gC m−2 yr−1. Whereas, the 
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lowest mean GPP was observed in winter (20.09 gC m−2 yr−1), and 50% of GPP values in 

winter were primarily concentrated between 11.60 and 25.65 gC m−2 yr−1. The seasonal 

GPP values showed the characteristics of summer > autumn > spring > winter. The mean 

ET was the highest in summer (176.28 mm yr−1), the 50% of ET values in summer were 

primarily concentrated between 142.44 and 213.74 mm yr−1, respectively. Followed by 

spring and autumn, with mean values of 81.89 mm yr−1 and 62.11 mm yr−1, respectively. 

For spring and autumn, 50% of ET values in spring were primarily concentrated between 

61.29 and 105.86 mm yr−1, while 50% of ET values in autumn were primarily concentrated 

between 50.13 and 73.49 mm yr−1. The lowest mean ET was observed in winter at 20.84 

mm yr−1, with minimum and maximum values of 0 and 44.88 mm yr−1, respectively. 

 

Figure 4. Mean values of (a) GPP, (b) ET, and (c)WUE in various seasons in Inner Mongolia. 

3.3. Contribution of Each Vegetation Type to GPP, ET, and WUE IAV 

The primary vegetation types in Inner Mongolia are coniferous forests (6.23%), 

broadleaf forests (7.75%), meadow steppe (12.77%), typical steppe (23.36%), desert steppe 

(17.97%), shrubs (6.85%), cropland (13.76%), and sand land vegetation (11.31%). The an-

nual average values of GPP, ET, and WUE for different vegetation types are presented in 

Figure 5. The relatively highest GPP values were found in broadleaf forests, coniferous 

forests, and meadow steppe in the study area, with values exceeding 800 gC m−2 yr−1. 

Among them, broadleaf forests showed the highest value, with a mean of 938.36 gC m−2 

yr−1, followed by coniferous forests, meadow steppe, shrubs, cropland, typical steppe, and 

sand land vegetation. On the contrary, the desert steppe showed the lowest GPP (94.42 

gC m−2 yr−1). Regarding ET, coniferous forests showed the highest value at 439.74 mm yr−1, 

followed by broadleaf forests, meadow steppe, shrubs, cropland, sand land vegetation, 

and typical steppe, with their average values exceeding 290 mm yr−1, while desert steppe 

showed the lowest value at 204.26 mm yr−1. Broadleaf forests showed the highest WUE 

value, with an average of 2.26 gC m−2 mm−1, while desert steppe showed the lowest WUE 

value at 0.46 gC m−2 mm−1. The mean values of WUE for different vegetation types fol-

lowed the order: broadleaf forest > coniferous forest > meadow steppe > shrub > cropland 

> typical steppe > sand land vegetation > desert steppe. 

Figure 5 depicts the contribution of each vegetation type to GPP, ET, and WUE IAV. 

The contribution of each vegetation type to GPP, ET, and WUE IAV showed some varia-

bility. We discovered that typical steppe contributed the most (169.89%) to GPP IAV from 

2001 to 2020, followed by cropland ecosystem (164.18%), and they are mostly found in the 

southeast and western rivers regions. The area of the shrub only accounts for 6.85% of the 

total area, but they make a great contribution to GPP IAV in arid and semi-arid zones, 

with a value of 143.69%. The broadleaf forest and sand land vegetation contributed 75.35% 

and 71.57% to GPP IAV, respectively. The desert steppe ecosystems cover far more area 

than shrubs and sand land vegetation, but they contributed only 31.51%. Among all veg-

etation types, only coniferous forest ecosystems contribute negatively to GPP IAV, with a 

value of −36.28%. The typical steppe contributed the most (141.09%) to ET IAV and was 

primarily distributed in the western Hulun Buir and Xilin Gol regions. The desert steppe 
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ecosystems were the second largest contribution to ET IAV (129.70%), followed by 

cropland (117.87%), shrubs (113.44%), and sand land vegetation (107.94%). By contrast, 

the meadow steppe, broadleaf forest, and coniferous forest ecosystems contributed the 

least to ET IAV, with a value of 48.70%, 37.15%, and 28.20%, respectively. More im-

portantly, we found that typical steppe accounts for the largest fraction (193.42%) of the 

WUE IAV over this period, followed by cropland ecosystems contributed 106.85%. The 

desert steppe, shrubs, sand land vegetation, meadow steppe, and broadleaf forest ecosys-

tems contributed to WUE IAV with 102.25%, 92.99%, 74.95%, 72.42%, and 27.27%, respec-

tively. In contrast, we found that coniferous forest ecosystems account for the lowest frac-

tion of the WUE IAV at −32.86%. In addtion, the WUE exhibits significant fluctuation at 

each vegetation type, with typical steppe anomalies being the greatest compared to other 

vegetation types. While desert steppe anomalies are more volatile for ET, coniferous forest 

anomalies are more prominent for GPP (Figure 6). 

 

Figure 5. The mean values of each vegetation type and their contribution to (a) GPP, (b) ET, and 

(c) WUE IAV in Inner Mongolia from 2001 to 2020. 
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Figure 6. The anomaly of GPP, ET, and WUE for different vegetation types from 2001 to 2020; (a,b) 

GPP, (c,d) ET, and (e,f) WUE. 

3.4. Contributions and Sensitivity of GPP and ET to WUE 

Variations in WUE are mainly attributed to changes in GPP and ET. Figure 7 shows 

the spatial patterns of the sensitivity coefficients of GPP and ET on WUE variations, with 

each pixel significant at the 0.05 significance level in F-statistics. A positive (negative) sen-

sitivity coefficient shows that WUE increases (decreases) as GPP (ET) increases. WUE 

showed a sensitivity coefficient of 0.866 for GPP, with higher sensitivity in the eastern and 

southwestern regions. The sensitivity of WUE to ET was −0.606, with high sensitivity in 

the Da Hinggan Ling Mountains and low sensitivity in the western region. As shown in 

Figure 8c, the change in WUE in Inner Mongolia from 2001 to 2020 is mainly driven by 

GPP. The contribution of GPP to WUE was 59.36%, accounting for 83.82% of all pixels, 

widely distributed in most of the central and western parts of Inner Mongolia. The contri-

bution of ET to WUE was 40.64%, accounting for 16.18% of the total pixels, mainly distrib-

uted in the Da Hinggan Ling Mountains in the northeast, the northern part of the Horqin 

sandy land, and the northern part of the Mu Us sandy land (Figure 8a,b). Figure 8 shows 

the spatial patterns of the relative contributions of GPP and ET to WUE variations, it ex-

hibited opposite spatial pattern characteristics. Areas with a high contribution of GPP 

(>60%) were widely distributed in the central and western regions, accounting for 49.47% 

of the total pixels, whereas areas with a low contribution of GPP (<40%) were scattered in 

the north of the Mu Us sandy land and the south foot of the Da Hinggan Ling Mountains, 

accounting for 3.06% of the total pixels. Areas with a high contribution of ET (>60%) ac-

counted for 3.06% of the total pixels, while areas with a low contribution of ET (<40%) 

accounted for 49.47% of the total area. 
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Figure 7. Spatial distribution of sensitivity coefficients of (a) GPP and (b) ET to WUE in Inner Mon-

golia. 

 

Figure 8. Spatial pattern of relative contributions of (a) GPP and (b) ET to WUE in Inner Mongolia 

from 2001 to 2020; (c) Spatial distributions of dominant controlling factors (i.e., GPP or ET). 

3.5. Drivers of WUE Variability 

Figure 9 shows the negative and positive contributions of human activity and climate 

change to WUE in Inner Mongolia from 2001 to 2020. The result shows that human activ-

ities are the main driving factor of WUE changes in Inner Mongolia from 2001 to 2020, 

with human activities and climate contributing to 53.52% and 46.46%, respectively. Hu-

man activity exhibited positive effects on WUE in approximately 70.34% of the pixels, 

dispersed in central Xilin Gol, Hohhot, Bugutu, eastern Bayan Nur, eastern Ordos, and 

eastern and western Hulun Buir. Nevertheless, human activities showed minor negative 

effects in approximately 29.66% of the pixels, mainly focused on the Da Hinggan Ling 

Mountains, Horqin sandy land, Otindag sandy land, and western Mu Us sandy land. 

Among them, areas with a negative contribution of less than 75% (2.45%) were scattered 

in the south foot of the Da Hinggan Ling Mountains. Areas with positive and negative 

contributions of climate change to WUE accounted for 68.20% and 31.80% of the total pix-

els, respectively. Areas with positive contributions are widely spread in the eastern and 
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western foot of the Da Hinggan Ling Mountains, the Horqin sandy land, the Otindag 

sandy land, and the western regions. Areas with negative contribution were located in 

central Xilin Gol, northern Chifeng, northern Tongliao, and the Da Hinggan Ling Moun-

tains. In particular, areas with negative contributions exceeding 75% accounted for 2.34% 

of the entire study area, mainly concentrated in the Da Hinggan Ling Mountains.  

 

Figure 9. Spatial distribution of positive and negative contributions of human activity and climate 

change on variations in WUE from 2001 to 2020. 

Figure 10 shows the spatial pattern of sensitivity coefficients between WUE and cli-

mate factors in Inner Mongolia from 2001 to 2020. The results show that WUE is more 

sensitive to precipitation than other climatic variables. The sensitivity coefficient of WUE 

to precipitation was 0.345 ± 0.325, with high sensitivity in the western region and low 

sensitivity in the Da Hinggan Ling Mountains. With positive sensitivity coefficient in most 

areas except northeast regions, with a value of 0.447, accounted for 85.88% of the areas, 

indicating that WUE increases with increasing precipitation. 14.12% of regions showed a 

negatively sensitive (−0.276, Figure 10a) between WUE and precipitation, and it is primar-

ily observed in the Da Hinggan Ling Mountains. According to Figure 10b, when precipi-

tation is less than 400 mm, the WUE of Inner Mongolia increases with an increase of pre-

cipitation. However, when precipitation exceeds 400 mm, the sensitivity of the WUE to 

precipitation decreases. The temperature was the second most important climate factor 

influencing WUE and it mainly exhibited a negative sensitivity, with a value of −0.025 ± 

0.217. Spatially, WUE was negatively sensitive to temperature in approximately 52.76% of 

regions (−0.189, Figure 10c), these negative sensitivity regions existed in the central and 

eastern parts of Inner Mongolia, indicating that the increase of temperature would de-

crease WUE. Furthermore, the high negative sensitivity coefficients areas located in the 

Otindag sandy land. A total of 47.24% of regions showed a positive sensitivity (0.159, Fig-

ure 10c) between WUE and temperature, which was mainly distributed in the northeast, 

southeast, and southwest part of the region. In addition, the sensitivity coefficient is pre-

dominantly positive when the temperature > 6℃ (Figure 10d), indicating that tempera-

tures above 6℃ are advantageous for the exchange of water and carbon in vegetation, and 

it is predominantly negative when the temperature< 6℃, indicating that temperatures be-

low 6℃ are unfavorable for the exchange of water and carbon. The mostly positive sensi-

tivity of WUE to solar radiation, with a value of 0.019 ± 0.231. More than 53.99% of regions 

showed a positive sensitivity between WUE and solar radiation (0.194, Figure 10e), which 

is mainly distributed in the northeast, southeast, and southwest part of the region. Areas 
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with a negative sensitivity between WUE and solar radiation accounted for 46.01% of total 

pixels (−0.186, Figure 10e), with the majority of these pixels located in the central and east-

ern parts of Inner Mongolia. The high negative sensitivity coefficient was found in the 

Otindag sandy land, indicating that WUE decreased as solar radiation increased. 

 

Figure 10. Sensitivity coefficient and their gradient change between WUE and climate factors in 

Inner Mongolia from 2001 to 2020. (a,b) Precipitation, (c,d) Temperature, and (e,f) Solar radiation. 

The sensitivity coefficients of various vegetation types toward precipitation were 

ranked from largest to smallest: sand land vegetation, cropland, desert steppe, typical 

steppe, shrub, meadow steppe, coniferous forest, and broadleaf forest, and all of them 

were positive except for coniferous forest, indicating that the vegetation WUE increased 

as precipitation increased. The sensitivity of desert steppe to temperature was highest, at 

a value of −0.107 ± 0.242. The sensitivity coefficients of broadleaf forest, meadow steppe, 

typical steppe, and desert steppe are all negative values, while coniferous forest, shrub 

and sand land vegetation, and cropland are all positive values. In addition, all vegetation 

types were positively sensitive to solar radiation except for coniferous forests and desert 

steppe. Of these, the desert steppe, cropland, and shrub ecosystems were more sensitive 

to solar radiation, with values of −0.134 ± 0.233, 0.116 ± 0.214, and 0.114 ± 0.212, respec-

tively (Table 2). 
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Table 2. Sensitivity of WUE to climate change for different vegetation types in Inner Mongolia. 

Vegetation Types Precipitation Temperature Solar Radiation 

Coniferous forest −0.121 ± 0.290 0.009 ± 0.174 −0.023 ± 0.207 

Broadleaf forest 0.046 ± 0.370 −0.035 ± 0.151 0.029 ± 0.232 

Meadow steppe 0.197 ± 0.379 −0.005 ± 0.171 0.034 ± 0.231 

Typical steppe 0.439 ± 0.192 −0.106 ± 0.223 0.004 ± 0.209 

Desert steppe 0.450 ± 0.222 −0.107 ± 0.242 −0.134 ± 0.233 

Shrub 0.398 ± 0.262 0.058 ± 0.178 0.114 ± 0.212 

Sand land vegetation 0.515 ± 0.180 0.025 ± 0.245 0.071 ± 0.205 

Cropland 0.497 ± 0.226 0.075 ± 0.192 0.116 ± 0.214 

Entire region 0.345 ± 0.325 −0.025 ± 0.217 0.019 ± 0.231 

4. Discussion 

4.1. Evaluation of GPP, ET, and WUE  

Changes in WUE in ecosystems have been explored using various methods at various 

spatial scales, including field control experiments, eddy covariance, isotope observation 

techniques, process-based models, and remote sensing products [13,17,53]. In this study, 

the long-term series datasets of GOSIF GPP and the GLEAM ET products were used. 

Many studies found that GOSIF GPP products have good performance in monitoring car-

bon sinks at regional and global scales [34,54]. Meanwhile, numerous studies have con-

firmed that GLEAM ET is highly applicable to various ecosystems, particularly grassland 

ecosystems in arid and semi-arid regions [36,55–57]. Therefore, the estimation of WUE in 

Inner Mongolia using GOSIF GPP and GLEAM ET products has certain reliability. 

4.2. Variations of WUE 

Our analysis showed that the WUE exhibited a decreasing trend from northeast to 

southwest, which is consistent with the previous research results [15,58]. The WUE of veg-

etation in Inner Mongolia showed some seasonal variability. Among the four seasons, the 

highest WUE was observed in summer, followed by autumn and winter, while the lowest 

WUE was observed in spring (Figure 6), which is inconsistent with the findings of Sun et 

al. [59], who discovered that WUE is the highest in summer, followed by autumn, spring, 

and winter. These findings were most likely attributable to the seasonal differences in GPP 

and ET. Seasonal GPP values followed the order summer > autumn > spring > winter. 

Seasonal ET values followed the order summer > spring > autumn > winter. As the tem-

perature rises in spring, snow or ice covering the land surface begins to melt, resulting in 

a significantly higher ET in spring than in autumn and winter [52]. In the meantime, veg-

etation would only be in the green-up stage in spring, with lower productivity [60]. There-

fore, ET would have a significantly stronger effect than GPP, thus leading to the lowest 

WUE in spring. 

The mean values of GPP, ET, and WUE differed across various ecosystems. Our anal-

ysis shows that the broadleaf forest and coniferous forest had higher mean values of GPP, 

ET, and WUE than other vegetation types, but their contributions to GPP, ET, and WUE 

IAV were generally lower than those of typical steppe. This may be attributed to physio-

logical properties, area proportion, and survival environment condition of vegetation 

types. The typical steppe contributes the most to GPP, ET, and WUE IAV in arid and semi-

arid regions, which indicates that typical steppe ecosystems play an important role in arid 

and semi-arid ecosystems. The typical steppe in the study area is vast (23.36%), with rela-

tively dense vegetation that allows for greater photosynthesis and efficient water ex-

change [58,61], which has resulted in the highest contribution to GPP, ET, and WUE IAV. 

Cropland was the second most important contributor to WUE IAV. The rational use of 

irrigation and fertilization techniques, as well as the advancement of tillage techniques 

and crop types, all contribute to a significant increase of greening (GPP), which aids in the 
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improvement of WUE on cropland [62,63]. By contrast, the typical steppe ecosystem is 

more efficient than the forest at enhancing the use of water by vegetated ecosystems in 

arid and semi-arid zones. 

In addition, WUE variations in Inner Mongolia were found to be mainly controlled 

by GPP (accounting for 83.82% of all pixels) and spread in the central and western regions; 

this finding agrees with that of Bai et al. [21] and Xue et al. [61]. However, Yang et al. [64] 

and Liu et al. [7] noted that GPP dominated WUE variations in humid regions, while ET 

dominated WUE variations in arid regions. This discrepancy could be attributed to the 

differences in analysis methods. 

4.3. Response Mechanism of WUE to Human Activities and Climate Change 

This study found that human activities are the primary drivers of WUE changes in 

Inner Mongolia, and their positive effects are stronger than their negative effects, which 

is consistent with previous findings [5,15]. Human activities induce an increase of WUE 

by increasing vegetation greenness through altered land cover [5]. The Chinese govern-

ment has been implementing several large-scale ecological restoration projects since 2000, 

including the Grain for Green Project (since 1999), the Three Norths Shelter Forest Pro-

gram (since 1978), and Grassland Ecological Protection Subsidy and Reward Policies 

(since 2010), all with the goal of restoring degraded ecosystem services by increasing veg-

etation greenness [32,65,66]. Driven by ecological restoration policies, positive changes 

have occurred in the forms of land cover. Figure 11 shows the Sankey diagram of land use 

transformations in Inner Mongolia from 2000 to 2020, the most dramatic transfer of land 

use mainly occurred in high-coverage grassland, medium-coverage grassland, and 

cropland, followed by forest, low-coverage grassland, and unused land. In particular, 

high-coverage grassland was largely converted into forest, medium-coverage grassland 

into high-coverage grassland, and cropland into high-coverage grassland. Furthermore, 

the transitions from forest to high-coverage grassland, low-coverage grassland to high-

coverage grassland, and unused land to medium-coverage and high-coverage grassland 

were the most extensive. In general, high-coverage grassland and forest areas have in-

creased in Inner Mongolia, and sandy land has decreased. Although the area of low-cov-

erage grassland has slightly expanded, it is still much smaller than the increase of the area 

of high-coverage grassland and forest (Table S1). Therefore, the positive effects of human 

activities exceed the negative effects. Nevertheless, human activities have also negatively 

affected WUE changes in the Da Hinggan Ling Mountains in the northeast, the Horqin 

sandy land, and the western part of the Mu Us sandy land. The degree of land use dy-

namics for individual land use types confirmed that urban development and built-up land 

expansion are relatively serious in Hulun Buir, Xingan, Tongliao, Chifeng, and Xilin Gol 

(Figures 12 and S2), which has greatly reduced the green area of the land surface, leading 

to decreases in WUE [67]. Therefore, environmental protection and rational land use plan-

ning should be strengthened in these areas. 

The influence of climate factors on WUE is caused by changes in GPP and ET [15,68]. 

Precipitation was found to be the dominant climate factor regulating WUE variability in 

Inner Mongolia. The sensitivity between WUE and precipitation was mostly positive, in-

dicating that the increase of precipitation promotes the increase of vegetation WUE, which 

agrees with the previous findings [21,69]. Located in arid and semi-arid regions, vegeta-

tion growth in Inner Mongolia is primarily limited by insufficient water supply, and pre-

cipitation is an important source of water for vegetation growth [21]. An increase of pre-

cipitation would increase GPP beyond the increase of ET, thus resulting in an increase of 

WUE [16]. Good consistency was found in the sensitivity of WUE with solar radiation and 

temperature (Figure 10b,c). Negative sensitivity coefficients were observed in the Xilin 

Gol and the Da Hinggan Ling Mountains. A decline of WUE in these regions may be at-

tributed to higher temperatures and increased solar radiation, leading to an increase of ET 

greater than of GPP [59,70]. Furthermore, the decline of WUE in Xilin Gol could be at-

tributed to the negative effects of climate change, while the decline of WUE in the Da 
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Hinggan Ling Mountains could be attributed to the common inhibition effects of human 

activity and climate change. 

 

Figure 11. Sankey maps of land use transformations in Inner Mongolia from 2000 to 2020. 

 

Figure 12. Land use spatial change maps for each league or city in Inner Mongolia from 2000 to 2020. 
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5. Conclusions 

WUE is a crucial indicator of the relationship between terrestrial carbon and water 

cycles, as well as an effective variable reflecting the response of productivity to water 

availability. This study adopted remote sensing data and meteorological data to examine 

variation characteristics of WUE and its response mechanism to human activity and cli-

mate change. The main findings can be summarized as follows: 

(1) The interannual change of GPP, ET, and WUE all showed significant increasing 

trends, with GPP showing a significantly larger increase than ET and WUE. Spatially, 

GPP, ET, and WUE showed an increasing trend. WUE showed increasing and de-

creasing trends in approximately 70% (22.35%) and 30% (2.63%) of the study area, 

respectively. Areas with significant increases were mainly distributed in the Horqin 

sandy land and the Mu Us sandy land, while areas with significant and slight de-

creases were concentrated in the central part of the Xilin Gol league and the Da Hing-

gan Ling Mountains in the northeast. 

(2) The seasonal WUE values followed the order summer (1.77 gC m−2 mm−1) > autumn 

(1.36 gC m−2 mm−1) > winter (0.78 gC m−2 mm−1) > spring (0.40 gC m−2 mm−1). This 

phenomenon may be related to seasonal differences in GPP and ET. 

(3) The mean values of GPP, ET, and WUE were higher in the broadleaf forest, conifer-

ous forest, meadow steppe, shrubs, and cropland than in other vegetation types, 

whereas desert steppe ecosystems had the lowest. However, we discovered that typ-

ical steppe contributed the most to GPP, ET, and WUE IAV. While the coniferous 

forest contributed the least or negatively to GPP, ET, and WUE IAV. This phenome-

non may be associated with the physiological structure, area distribution, and sur-

vival condition of vegetation types. 

(4) The sensitivity analysis of WUE to GPP and ET revealed that WUE was more sensi-

tive to GPP than ET. The increase of WUE was mainly driven by GPP. Its contribution 

was 59.36%, accounting for 83.82% of total pixels, which covered most of the central 

and western regions and the eastern and western parts of Hulun Buir. The contribu-

tion of ET was 40.64%, accounting for 16.18% of the total pixels, which were scattered 

in the Da Hinggan Ling Mountains, the northern part of the Horqin sandy land, and 

the northern part of the Mu Us Sandy land. 

(5) Human activities and climate change were found to be the two main forces driving 

the variability of WUE, with contributions of 53.52% and 46.48%, respectively. Hu-

man activities were the primary cause of WUE changes and their positive effects were 

significantly stronger than their negative effects. Among climate factors, precipita-

tion was the primary climate factor affecting WUE changes in Inner Mongolia, fol-

lowed by temperature and solar radiation. 

This study sheds light on the distribution characteristics of carbon and hydrology, as 

well as the response of carbon–water coupling to climate change and human activity in 

arid and semi-arid regions. It offers guidance on ecological environmental management 

and water resource utilization in water-limited regions. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/rs14215422/s1. Figure S1: Spatial pattern of annual average 

WUE in Inner Mongolia from 2001 to 2020. (a) Spring, (b) Summer, (c) Autumn, and (d)Winter. 

Figure S2: Degrees of land use dynamics for each league or city in Inner Mongolia from 2000 to 2020. 

Table S1: Land use transfer matrix in 2000–2020 (km2). 
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Abstract: Water use efficiency (WUE) is an important variable to explore coupled relation-
ships in carbon and water cycles. In this study, we first compared the spatial variations of 
annual gross primary productivity (GPP) and evapotranspiration (ET) using four GPP and ET 
products. Second, we selected the products closest to the flux towers data to estimate WUE. 
Finally, we quantitatively analyzed the impact of climate change and soil water content on 
WUE. The results showed that: (1) Four GPP and ET products provided good performance, 
with GOSIF-GPP and FLDAS-ET exhibiting a higher correlation and the smallest errors with 
the flux tower data. (2) The spatial pattern of WUE is consistent with that of GPP and ET, 
gradually decreasing from the northeast to the southwest. Higher WUE values appeared in 
the northeast forest ecosystem, and lower WUE values occurred in the western Gobi Desert, 
with a value of 0.28 gC m‒2 mm‒1. The GPP and ET products showed an increasing trend, 
while WUE showed a decreasing trend (55.15%) from 2001 to 2020. (3) The spatial rela-
tionship between WUE and driving factors reveal the variations in WUE of Inner Mongolia are 
mainly affected by soil moisture between 0 and 10 cm (SM0–10cm), vapor pressure deficit 
(VPD), and precipitation, respectively. (4) In arid regions, VPD and precipitation exhibit a 
major influence on WUE. An increase in VPD and precipitation has a negative and positive 
effect on WUE, with threshold values of approximately 0.36 kPa and 426 mm, respectively. (5) 
In humid regions, SM0–10cm, VPD, SM10–40cm, and SM40–100cm exert a significant im-
pact on WUE, especially SM0–10cm, and weakens with increasing soil depths, these differ-
ences may be related to physiological structure and living characteristics of vegetation types 
in different climate regimes. Our results emphasize the importance of VPD and soil moisture 
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in regional variability in WUE. 

Keywords: gross primary productivity (GPP); evapotranspiration (ET); water use efficiency (WUE); climate 
change; soil water content 

1  Introduction 

Water use efficiency (WUE) is defined as the ratio of ecosystem gross primary productivity 
(GPP) and evapotranspiration (ET), it reflects the coupling of carbon and water cycles in 
terrestrial ecosystems (Huang et al., 2017; Li et al., 2018c; Yang et al., 2020; Zhao et al., 
2020). As an effective indicator for assessing ecological sustainable development, WUE as-
sociates carbon and water exchange processes between terrestrial ecosystems and the at-
mosphere, as well as quantifying how much water an ecosystem uses relative to carbon as-
similation (Zhu et al., 2015; Du et al., 2019; Guo et al., 2019a; 2019b; Xu et al., 2020; Zhao 
et al., 2021), it is crucial to global ecosystem functions, ecosystem services, and ecosystem 
feedbacks to climate change (Niu et al., 2011; Li et al., 2018c; Liu et al., 2019; Xu et al., 
2020). Therefore, a better insight into the variations and regulating mechanisms of WUE 
would help to achieve regional sustainable development and water resource utilization. 

Currently, there are several methods available to estimate WUE, namely eddy covariance 
(EC), process-oriented ecosystem models (Huang et al., 2016; Yang et al., 2016), and satel-
lite-based remote sensing (Zhang et al., 2015; Zou et al., 2020). Thereinto EC is the standard 
estimation method with the highest accuracy, but it is limited to the smaller regional scales 
(Brummer et al., 2012). Models methods depend on the input data and considered parame-
ters and can effectively provide long-term dynamics of WUE over larger regional scales. 
There are large uncertainties in the model inputs and parameters (Zou et al., 2020). Recently, 
many studies have employed GPP and ET remote sensing products to estimate WUE (Du et 
al., 2019; Zou et al., 2020). Satellite remote sensing provides a variety of ET and GPP 
products with different temporal and spatial characteristics, such as the Moderate-Resolution 
Imaging Spectroradiometer (MODIS) (Running et al., 2004), the Breathing Earth System 
Simulator (BESS) (Ryu et al., 2011; Jiang and Ryu, 2016), and the Global Land Surface 
Satellite (GLASS) products (Yuan et al., 2010). However, these products show great varia-
tion due to their different model algorithms, input parameters, and sensors (Li et al., 2021b). 
Therefore, it is necessary to evaluate the accuracy of GPP and ET products before estimating 
WUE. 

Previous studies have reported that ecosystem WUE may be affected by biotic and abiotic 
factors such as leaf area index (LAI), precipitation, vapor pressure deficit (VPD), solar radi-
ation, and temperature (Sun et al., 2018; Guo et al., 2019a; Wu et al., 2019; Wang et al., 
2020; Zhao et al., 2021). The influence of environmental factors on WUE differs under var-
ying temporal and spatial scales with climate conditions (Song et al., 2017; Du et al., 2019). 
In arid and semi-arid regions, Sun et al. (2018) and Bai et al. (2020) noted that the variabil-
ity of WUE was influenced by precipitation. Xu et al. (2021) found that WUE in arid and 
semi-arid regions of China was positively correlated with precipitation and temperature, 
while Liu et al. (2019) found that variations in WUE are mostly affected by soil moisture in 
most regions. Zhang et al. (2022) reported that groundwater depth plays an important role in 
spatial variations of WUE in arid and semi-arid regions. Given the above studies, it is still 
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disputed as to what are the major factors forcing variations in WUE under the background of 
climate change. 

The arid, semi-arid, and sub-humid regions of China form an ecological fragile belt, while 
Inner Mongolia, located in northern China, is a typical inland arid and semi-arid region (Mu 
et al., 2013; Luo et al., 2021). Grassland is one of the widely distributed ecosystems in Inner 
Mongolia, which play a pivotal role in the global carbon-water cycle and climate systems 
(Yu et al., 2020; Guo et al., 2021). However, recently the grassland environment has expe-
rienced serious damage, such as vegetation degradation, land desertification, and shrinking 
lakes (John et al., 2013; Tao et al., 2015; Huang et al., 2021), which seriously threaten eco-
system function and socioeconomic development. WUE is a vital property of ecosystem 
function and an important basis for promoting the sustainable development of regional eco-
systems (Du et al., 2019; Guo et al., 2019a; Liu et al., 2019). However, few studies have 
focused on WUE variability and its driving mechanisms in fragile ecosystems. Therefore, in 
this work, we take Inner Mongolia as the study region and quantitatively assess the effects of 
driving factors (climatic change and soil water content) on WUE variations. Specifically, our 
objectives are: (1) to compare the spatiotemporal patterns of four GPP and ET products, and 
select products that have good consistency with the flux towers observations data to estimate 
WUE, (2) to analyze the spatiotemporal variations and trends in WUE, (3) to discuss the 
impact of climatic factors and soil water content to variations in WUE, and (4) to determine 
the threshold of the key factors that control changes in WUE. 

2  Materials and methods 

2.1  Study area 

Inner Mongolia (37°24'‒53°23'N, 97°12'‒126°04'E) is located along the northern border of 
China. Its landscape consists mainly of high plains, and the terrain slopes downward from 
west to east, with an average altitude of above 1000 m (Figure 1a). Inner Mongolia is an 
important portion of the Eurasian grasslands (Dai et al., 2016; Li et al., 2018a). Grassland is 
the major vegetation type of Inner Mongolia, with the different types varying from east to 
west as forest (11.27% of the total area), meadow steppe (10.31%), typical steppe (18.85%), 
desert steppe (14.50%), and the Gobi Desert (18.92%), as presented in Figure 1b. Vegetation 
type data were obtained from a 1:1,000,000 scale vegetation map of Inner Mongolia and 
rasterized to a spatial resolution of 0.083°. Inner Mongolia has a temperate continental cli-
mate, with an annual average temperature ranging between ‒3.15 and 9.8℃ and annual pre-
cipitation between 50 and 550 mm based on meteorological stations from 2001 to 2020. We 
used the humidity region definition from China’s eco-geographical region map of the Insti-
tute of Geographic Sciences and Natural Resources Research. According to the annual arid-
ity index (AI), the study area can be divided into humid (AI<1), sub-humid (1<AI<1.49), 
semi-arid (1.5<AI<4), and arid zones (AI≥4) from east to west. In this study, humid regions 
include humid and sub-humid zones with an annual aridity index of less than 1.49, while 
arid regions refer to arid and semi-arid zones with an annual aridity index greater than 1.5 
(Figure 1b).  
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Figure 1  Spatial distributions of annual average temperature and annual precipitation (a), and different vegeta-
tion types, flux tower observation stations, meteorological stations, and ecological climatic zones (b) of Inner 
Mongolia 

 

2.2  Data sources 

2.2.1  GPP products 

In this study, we employed four GPP products: the global OCO-2-based solar-induced chlo-
rophyll fluorescence product (GOSIF), Global Land Surface Satellite (GLASS), Breathing 
Earth System Simulator (BESS), and the Moderate Resolution Imaging Spectroradiometer 
(MODIS) products (Table 1). These four GPP products have been widely used for evaluating 
carbon sinks and monitoring the vegetation productivity of regional and even global terres-
trial ecosystems. 

(1) GOSIF-GPP 
Li and Xiao (2019) based on linear relationships between SIF and GPP to generate a new 

global GPP product, that is “GOSIF-GPP” (http://data.globalecology.unh.edu/). This product 
provides 8-daily GPP values with a 0.05° spatial resolution from 2001 to 2020. This product 
is widely used for the evaluation of vegetation productivity (Li and Xiao, 2019a; 2019b). 

(2) GLASS-GPP 
The GPP data are produced from the GLASS product generation system, which employs 

an improved algorithm for the light use efficiency model (EC-LUE), with a spatial resolu-
tion of 0.05° and a temporal resolution of 8 days from 1982 to 2018. This data was produced 
by National Earth System Science Data Center, National Science & Technology Infrastruc-
ture of China (http://www.geodata.cn) (Yuan et al., 2010). 

(3) BESS-GPP 
The BESS GPP dataset was generated from a complex process-based model and driven by 

multiple modules, which are coupled atmospheric and canopy radiative transfers, canopy 
photosynthesis, transpiration, and energy balance (Ryu et al., 2011; Jiang and Ryu, 2016). 
The BESS data was obtained from the Environmental Ecology Lab of Seoul National Uni-
versity (http://environment.snu.ac.kr/data/), with a spatial resolution of 0.05° and temporal 
resolutions of daily from 2000 to 2017.  

(4) MODIS-GPP 
The MODIS GPP products (MOD17A2H) adopted a light use efficiency model algorithm 

using MODIS vegetation indices as input surface vegetation information, with an 8-day 
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composite and a 500 m resolution from 2001 to 2020 (Running et al., 2004). This product is 
provided by the National Aeronautics and Space Administration (NASA) (https://ladsweb. 
modaps.eosdis.nasa.gov/). The MODIS product was resampled to a 0.05º spatial resolution 
using the nearest neighbor methods. 

 

Table 1  Major information on four GPP products is used herein 

GPP Prod-
ucts 

Spatial and tem-
poral resolution Units Year Data source References 

GOSIF 0.05°, 8 days gC m‒2d‒1 2000–2020 http://data.globalecology.unh.edu/ Li and Xiao, 2019a; 
2019b 

BESS 0.05°, daily gC m‒2d‒1 2000–2017 http://environment.snu.ac.kr/data 
Ryu et al., 2011; 
Jiang and Ryu, 2016 

GLASS 0.05°, 8 days gC m‒2d‒1 1982–2018 http://glass.umd.edu Yuan et al., 2010 

MOD17A2 500 m, 8 days kgC m‒28d‒1 2001–2020 https://ladsweb.modaps.eosdis.nasa.gov/ Running et al., 2004 

 
2.2.2  ET products 

In this study, we employed four long-time series gridded ET products, namely the Global 
Land Evaporation Amsterdam Model version 3.5a (GLEAM 3.5a), Famine Early Warning 
Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), Global Land 
Data Assimilation System (GLDAS), and the Moderate Resolution Imaging Spectroradiom-
eter (MODIS) products (Table 2).  

(1) GLEAM-ET 
The GLEAM remote sensing product is derived from modified Priestley-Taylor algo-

rithms that separately estimate the different components of ET (i.e., soil evaporation, tran-
spiration, and interception loss). In addition, GLEAM provides surface and root-zone soil 
moisture, potential evaporation, and evaporative stress conditions (Miralles et al., 2011; 
Martens et al., 2017). This set of algorithms produces two datasets (GLEAM 3.5a and 3.5b), 
while in this study, the evaporation estimates from the GLEAM 3.5a datasets were used 
(https://www.gleam.eu/), which spans from 1981 to 2020 and has a spatial resolution of 
0.25° and a temporal resolution of daily. 

(2) FLDAS-ET 
The FLDAS products (https://daac.gsfc.nasa.gov/) are based on multiple meteorological 

inputs or use existing land surface models, generated ensembles of soil moisture, ET, and 
other variables (McNally et al., 2017). The monthly ET datasets cover the period 1982–2020 
with a spatial resolution of 0.1°.  

(3) GLDAS-ET 
The ET data provided by GLDAS is generated by integrating satellite products and 

ground observational data using advanced land surface modeling and data assimilation tech-
niques (Rodell et al., 2004). Currently, GLDAS has three versions, i.e., GLDAS-2.0, 
GLDAS-2.1, and GLDAS-2.2. GLDAS-2.0 is forced entirely with the Princeton meteoro-
logical input data. GLDAS-2.1 product with a 3-hour temporal resolution is forced by a 
combination of model and observational data. GLDAS-2.2 product use data assimilation 
(DA). We selected the GLDAS-2.2 product with a 0.25° spatial resolution and daily tem-
poral coverage for the period from 2003–2020, and the GLDAS-2.0 data to cover the period 
from 2001 to 2003 (https://daac.gsfc.nasa.gov/). 
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(4) MODIS-ET 
The MODIS ET (MOD16A2) products for the period 2001–2020 were downloaded from 

NASA (https://ladsweb.modaps.eosdis.nasa.gov/), and are estimated based on the Pen-
man-Monteith model, which uses meteorological reanalysis data and vegetation property 
dynamics retrieved from MODIS as input variables (Mu et al., 2007; Mu et al., 2011). This 
is an 8-day cumulative MODIS ET dataset with a 1 km spatial resolution. To make them 
comparable, the four ET products were resampled to a 0.05° spatial resolution, and their 
units were uniformly converted into mm/d. 

 
Table 2  Major information of the four ET products used herein 

ET Products Spatial and tem-
poral resolution Units Year Data source References 

GLEAM3.5a 0.25°, daily mm d‒1 1981–2020 https://www.gleam.eu/ Miralles et al., 2011; 
Martens et al., 2017 

FLDAS 0.1°, monthly kg m‒2s‒1 1982–2020 https://daac.gsfc.nasa.gov/ McNally et al., 2017 

GLDAS2.0 
GLDAS2.2 

0.25°, daily kg m‒2s‒1 2000–2003               
2004–2020 https://daac.gsfc.nasa.gov/ Rodell et al., 2004 

MOD16A2 1 km, 8-daily kg m‒28d‒1 2001–2020 https://ladsweb.modaps.eosdis.nasa.gov/ 
Mu et al., 2007; 
2011 

 
2.2.3  Flux tower observations data 

We compiled three flux towers observations data in Inner Mongolia obtained from 
FLUXNET2015 (http://fluxnet.fluxdata.org/) and ChinaFlux (http://www.chinaflux.org/), 
respectively, namely Duolun grassland (D01), Duolun Degraded Meadow, and Inner Mon-
golia sites (Figure 1c and Table S1). Grasslands are these site major vegetation types. The 
flux towers continuously recorded measurements of net ecosystem exchange (NEE), eco-
system respiration (ER), latent heat flux (LE), and GPP over different time scales. The ob-
served GPP is named GPP_NT_VUT_MEAN (GPP=ER-NEE) in the dataset (Wu et al., 
2019; Xu et al., 2020; Yang et al., 2020). However, the observed ET was usually reflected 
with latent heat flux (Wang et al., 2018). To obtain daily observed ET (mm d‒1), need to be 
converted from the daily EC latent heat flux (LE, W m‒2) from the two flux tower sites using 
the following equation (Li et al., 2018b; Ma et al., 2018): 

 
LEET
λ

=   (1) 

where λ is the latent heat of vaporization of water (2.45 MJ kg−1). 

2.2.4  Climate data 

Climatic factors are important variables that affect the photosynthesis and transpiration of 
plants (Zhao et al., 2021). To explore the impact of climate change on the WUE, the precip-
itation, vapor pressure deficit (VPD), temperature, and wind speed data were used in this 
study. The monthly wind speed was extracted from the FLDAS products. The daily precipi-
tation, temperature, and VPD come from 118 meteorological stations distributed across In-
ner Mongolia and were provided by the China Meteorological Data Network 
(http://data.cma.cn) for the period 2001–2020. Climate data were interpolated to a 
0.05°×0.05° spatial resolution by the kriging methods. 
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2.2.5  Soil water content data 

As a critical source of water for maintaining physiological activity, the dynamics of soil 
moisture can influence vegetation features such as phenology, productivity, and ET (Luo et 
al., 2021; Cleverly et al., 2016). Therefore, the most recently developed FLDAS soil mois-
ture products for four different layers, namely 0–10 cm (SM0–10cm), 10–40 cm 
(SM10–40cm), 40–100 cm (SM40–100cm), and 100–200 cm (SM100–200cm), and terres-
trial water storage (TWS) were chosen in this study. The TWS for the period 2001–2020 was 
derived from the GLDAS (https://daac.gsfc.nasa.gov/). To avoid spatial resolution mismatch, 
all gridded products were resampled to a spatial resolution of 0.05°.  

A set of nine variables, including climate factors, and soil water content, were selected as 
the drivers of the changes in WUE for the period 2001–2020 (Table 3). 

 
Table 3  Variables as the drivers of the changes in WUE for Inner Mongolia 

Variable 
class Variable name and unit Spatial and temporal 

resolution Data source 

Climate 
factors 

Precipitation (mm) 0.05°, daily China Meteorological Data Network 
(http://data.cma.cn) 

Temperature (℃) 0.05°, daily China Meteorological Data Network 
(http://data.cma.cn) 

Vapor pressure deficit (kPa) 0.05°, daily China Meteorological Data Network 
(http://data.cma.cn) 

Wind speed (m/s) 0.1°, monthly FLDAS products (https://daac.gsfc.nasa.gov/) 

Soil water 
content 

Soil moisture 0–10 cm (m3 m‒3) 0.1°, monthly FLDAS products (https://daac.gsfc.nasa.gov/) 

Soil moisture 10–40 cm (m3 m‒3) 0.1°, monthly FLDAS products (https://daac.gsfc.nasa.gov/) 

Soil moisture 40–100 cm (m3 m‒3) 0.1°, monthly FLDAS products (https://daac.gsfc.nasa.gov/) 

Soil moisture 100–200 cm (m3 m‒3) 0.1°, monthly FLDAS products (https://daac.gsfc.nasa.gov/) 

Terrestrial water storage (mm) 0.25°, daily GLDAS product (https://daac.gsfc.nasa.gov/) 

 

2.3  Methods 

2.3.1  Ecosystem water use efficiency 

WUE (gC m−2 mm‒1) was defined as the ratio of GPP (gC m‒2 yr‒1) to ET (mm yr‒1) at the 
ecosystem scale (Huang et al., 2016; Ma et al., 2019; Yang et al., 2020; Li et al., 2021a; Tao 
et al., 2022): 

 GPPWUE
ET

=  (2) 

when WUE is greater than 1, the water loss is less than the carbon assimilation, while for 
WUE is less than 1, the water loss is greater than the carbon assimilation. 

2.3.2  Vapor pressure deficit 

VPD is an important atmospheric constraint for affects the water and carbon fluxes (Novick 
et al., 2016), it refers to the difference between the water vapor pressure in a saturated state 
and the actual vapor pressure in the air at a certain temperature. It is widely used to measure 
atmospheric drought extent (Yuan et al., 2019). In this study, the VPD (kPa) was calculated 
from the relative air humidity and temperature provided by 118 meteorological stations us-
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ing the following: 
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where Ta is the temperature (Ta, ℃) and RH is relative humidity (RH, %). 

2.3.3  GPP and ET products validation 

The reliability and accuracy of four GPP and ET gridded products were validated using flux 
tower observations data. Four metrics, namely the Pearson correlation coefficient (R, Equa-
tion 4), the root mean square error (RMSE, Equation 5), mean absolute error (MAE, Equa-
tion 6), and mean bias (Bias, Equation 7), are used to evaluate the agreement between the 
gridded products values and flux tower observed values at the site scales. The equations are 
as follows: 
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where xi represents the flux tower observed GPP and ET, yi represents the values of GPP and 
ET from the considered products; x  and y  represents the corresponding average values 
of the observed data and products (GPP or ET), and n is the number of samples. 

2.3.4  Partial correlation analysis 

In this study, partial correlation analysis was employed to measure the relative importance of 
GPP or ET to variations in WUE. By controlling for the effects of other variables, we deter-
mine the degree of the relationship between two variables as follows: 

 
( )( ), 2 21 1

XY XZ YZ
XY Z

XZ YZ

R R RR
R R

−
=

− −
             (8) 

where RXY,Z is the partial correlation coefficient between X and Y after removing the effects 
from Z. RXY, RXZ, and RYZ are the correlation coefficients between X and Y, X and Z, and Y 
and Z, respectively. If the ratio of the partial correlation coefficient between WUE and GPP 
to that between WUE and ET is greater than 1, then GPP plays a prominent role. By contrast, 
if the value is less than 1, it indicates that WUE is mainly driven by ET (Zhao et al., 2021). 

2.3.5  Maximum correlation analysis method 

To diagnose the key dominant factors of variations in WUE using the maximum correlation 
coefficient method. The driving factors corresponding to the maximum correlation coeffi-
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cients (Rmax) can be regarded as the key dominant factors of changes in WUE. The general 
equation is as follows:  
 ( ),i iR corr WUE df=  (9) 

 ( )max iR Max R=  (10) 
where Ri is the correlation coefficient between the driving factors and WUE, with the driving 
factors including temperature, precipitation, wind speed, VPD, TWS, SM0–10cm, SM10– 
40cm, SM40–100cm, and SM100–200cm; and Rmax is the maximum value of Ri. 

3  Results 

3.1  Spatial distribution in annual GPP and ET over Inner Mongolia 

Figures 2 and 3 display the spatial distribution of the four GPP and ET products over Inner 
Mongolia for the periods 2001–2017 and 2001–2020, respectively. We found that spatial 
variation of annual average GPP showed good consistency with ET. The highest and lowest 
GPP values from four gridded products were found in the northeast forest and western Gobi 
Desert. The annual GPP of the forest areas in the northeast is greater than 750 gC m‒2 yr‒1, 
while the annual vegetation productivity of the Gobi Desert in the southwest is less than 
150 gC m‒2 yr‒1 (Figure 2). The annual average GPP of the four products was estimated to be  

 

 
 

Figure 2  Spatial distributions of annual average GPP over Inner Mongolia during 2001–2017  
(a. GOSIF, b. BESS, c. GLASS, d. MODIS products) 
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between 449.50 and 500.25 gC m‒2 yr‒1 from 2001 to 2017 (MODIS‒GPP boundary as 
standard). The GPP values quantified by GOSIF and GLASS products are exhibited higher 
than those quantified by BESS and MODIS products. The four ET products also show a 
similar spatial distribution pattern (Figure 3), gradually decreasing from the east to west and 
from south to north, and exhibited latitude and longitude geographical zonality. However, it 
can be observed that there are obvious differences in the absolute values of the four ET 
products. The annual ET derived from four products are all highest in the northeast forest 
(greater than 480 mm yr‒1) and lowest in the southwest Gobi Desert (less than 60 mm yr‒1). 
Besides, the annual average ET was found to be 336.29 mm yr‒1, 316.41 mm yr‒1, 322.60 
mm yr‒1, and 248.26 mm yr‒1 for the GLEAM, GLDAS, FLDAS, and MODIS products, 
respectively (MODIS‒ET boundary as standard). The ET values from the GLEAM, GLDAS, 
and FLDAS products are generally greater than those for the MODIS product. 
 

 
 

Figure 3  Spatial distributions of annual average ET over Inner Mongolia during 2001–2020  
(a. GLEAM, b. FLDAS, c. GLDAS, d. MODIS products) 

 

3.2  Spatiotemporal trends in annual GPP and ET over Inner Mongolia 

Spatial distribution of trends in GPP from 2001 to 2017 over Inner Mongolia, as presented in 
Figure 4. The four GPP products all showed an increasing trend, with the areas correspond-
ing to such a trend for the GOSIF, BESS, MODIS, and GLASS products accounting for 
85.23%, 90.27%, 95.33%, and 67.32% of the total area, respectively. Increasing trends are 
mainly distributed in Mu Us sandy land and eastern Inner Mongolia. However, there are de-
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creasing trends in the north of Chifeng, the east of Xilingol, the central Hulunbuir, and the 
northwest of Alxa. In terms of the spatial distribution of trends in ET during the period 
2001–2020 (Figure 5), the four ET products show obvious differences and similarities. In-
creasing trends were derived for the ET of the GLEAM, FLDAS, and MODIS products, ac-
counting for 82.96%, 98.01%, and 92.09% of the total area, respectively. And it is mainly 
located in vast areas of study regions, whereas there is an opposite trend in the GLDAS 
products, accounting for 58.87% of the total area, mainly distributed in central Inner Mon-
golia. 
 

 
 

Figure 4  Spatial distributions of trends in annual GPP over Inner Mongolia during 2001–2017  
(a. GOSIF, b. BESS, c. GLASS, d. MODIS products) 
 

The performance and accuracy of the four GPP and ET products based on observation 
data at the three flux tower sites were verified (Figures 6 and 7). As shown in Figures 6a–6f, 
the four GPP products all showed a high correlation with the flux tower GPP. The GOSIF 
has the best correlations (R2=0.611) compared with the MODIS (R2=0.584), GLASS 
(R2=0.518), and BESS (R2=0.492) products, as well as the smallest errors. Interestingly, 
although the GLASS correlation coefficient was greater than that for BESS, the RMSE, 
MAE, and Bias of the GLASS products were greater than those of the BESS product. Fur-
thermore, we found that all of these four gridded products overestimate GPP, with an aver-
age Bias of less than zero, especially the GLASS product with a Bias value of –0.48. 

The ET correlation analysis revealed that the FLDAS has a high correlation with the 

 



180  Journal of Geographical Sciences 

 

 
 

Figure 5  Spatial distributions of trends in annual ET over Inner Mongolia during 2001–2020  
(a. GLEAM, b. FLDAS, c. GLDAS, d. MODIS products) 

 
observed ET (R2=0.871) compared to GLEAM, GLDAS, and MODIS products. The 
MODIS exhibited a relatively weak correlation and higher errors with observed ET, with an 
R2 value of 0.753, RMSE, MAE, and Bias values of 16.05, 11.77, and 8.14, respectively 
(Figures 7a–7f). In addition, GLDAS, MODIS, and FLDAS underestimated the observed ET 
on a monthly scale with Bias values of 1.23, 8.15, and 0.04, respectively. Whereas GLEAM 
overestimates ET, with a Bias value of –3.77. Overall, the GOSIF and FLDAS products 
agreed well with flux tower data than other products, along with the smallest errors. There-
fore, the GOSIF and FLDAS products were selected to characterize variations in GPP and 
ET, and utilize them to estimate WUE. 

3.3  Spatiotemporal variations and trends in WUE and drivers 

From the spatial pattern of WUE in Inner Mongolia from 2001 to 2020 (Figure 8), it can be 
seen that the spatial regime of WUE matches well with that of variations in GPP and ET, all 
showing gradually decreasing values from northeast to the southwest. The annual average 
WUE in Inner Mongolia during this period was 1.23 gC m‒2 mm‒1, ranging from approxi-
mately 0.002 to 4.65 gC m‒2 mm‒1. The high WUE values were mainly in the forest biome 
across northeast Inner Mongolia, with the average values of 2.19 gC m‒2 mm‒1, followed by 
meadow steppe (2.05 gC m‒2 mm‒1), cropland (1.44 gC m‒2 mm‒1), shrubs (1.39 gC m‒2 
mm‒1), typical steppe (1.22 gC m‒2 mm‒1), sand land vegetation (0.96 gC m‒2 mm‒1), and  
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Figure 6  Correlation comparisons of the four GPP products over an 8-daily time scale from 2007 to 2010  
(a. GOSIF, b. BESS, c. GLASS, d. MODIS products, e. MAE frequency, f. bias between the four gridded datasets 
and flux tower GPP) 
 
desert steppe (0.54 gC m‒2 mm‒1), with the lowest WUE values occurred in the western Gobi 
Desert ecosystem, with a value of 0.28 gC m‒2 mm‒1 (Figure 8c). From 2001 to 2020, the 
WUE in Inner Mongolia showed a non‒significant decreasing trend with a rate of –0.0016 
gC m‒2 mm‒1 a‒1, accounting for 55.15% of the entire region (Figures 8a and 8b). The de-
creasing WUE was mainly distributed in the north of Xingan, north of Chifeng, central 
Hulunbuir, east of Xilingol, and northwest of Alxa. In contrast, the WUE in the Ordos, Ulan 
Qab, Bayan Nur, Baotou, Hohhot, and eastern Alxa regions showed an increasing trend, ac-
counting for 44.85% of Inner Mongolia. 
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Figure 7  Correlation comparisons of the four ET products over a monthly time scale from 2004 to 2008  
(a. GLEAM, b. FLDAS, c. GLDAS, d. MODIS products, e. MAE frequency, f. bias between the four gridded 
datasets and observed ET) 
 

From 2001 to 2020, the VPD and wind speed of Inner Mongolia showed decreased by 
–0.002 m s‒1 a‒1 and –0.002 kPa a‒1, respectively. Whereas other driving factors such as soil 
moisture in different layers, precipitation, TWS, and temperature all showed increasing 
trends, which implied that characterize the warming and wetting in Inner Mongolia. Among 
these drivers, the interannual variations in soil moisture of four different layers were well 
consistent with precipitation, and there are all significantly increasing trends (Figure 9). 

3.4  Relationship between the WUE and driving factors 

We found that 59.44% of the WUE pixels (significant in 14.85% of pixels) were positively 
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Figure 8  Distribution of annual average WUE (a), trends (b), and different vegetation types (c) of Inner Mongo-
lia from 2001 to 2020. The black dotted line represents the average WUE value for Inner Mongolia. 

 
correlated with precipitation, and are mainly found in central and western Inner Mongolia, 
this indicates that in these regions increased precipitation leads to increased WUE. Whereas 
WUE negatively correlated with precipitation in 40.56% of the pixels, with 14.77% of them 
being statistically significant. This area was mainly distributed in the northeast part of Inner 
Mongolia (Figure 10). A negative correlation between WUE and VPD was observed in cen-
tral and western Inner Mongolia accounting for 61.89% of the pixels (significant in 17.85% 
of pixels), which suggests that these regional WUE values declined with intensified atmos-
pheric drought. By contrast, a positive correlation between WUE and VPD was found main-
ly in the northeast part of Inner Mongolia, accounting for 38.11% of pixels (significant in 
10.13% of pixels, Figure 10). In addition, the WUE was positively correlated with SM of 
different layers and TWS over central and western Inner Mongolia. However, the WUE was 
negatively correlated with TWS, SM0–10cm, SM10–40cm, SM40–100cm, and SM100– 
200cm over the eastern Inner Mongolia, accounting for 55.48% (14.16%), 56.41% (23.45%), 
59.52% (20.70%), 59.08% (17.44%), and 55.03% (9.20%) of the pixels, respectively (Figure 
10). This implied that WUE tends to decrease with increasing SM and TWS under relatively 
wet conditions. Additionally, 52.92% (significant in 1.79%) of wind speed and 55.53% (sig-
nificant in 5.02%) of temperature pixels were negatively correlated with WUE and were 
mainly located in the central and western parts of Inner Mongolia, illustrating that the in-
crease in wind speed and temperature had a clear negative effect on WUE. 
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Figure 9  Long-term changes of different driving factors in Inner Mongolia from 2001 to 2020. The black dotted 
line represents the trend line. 
 

The spatial pattern of the maximum correlation coefficients (Rmax) between WUE and 
driving factors can reflect the sensitivity of WUE to the variability of driving factors (Fig-
ures 11 and 12). The results illustrate that WUE over Inner Mongolia is most sensitive to 
SM0–10cm, VPD, and precipitation, with the areas showing significant Rmax accounting for 
12.71% (negative), 11.54% (negative), and 7.02% (positive) of Inner Mongolia, respectively 
(Figure 12a). In humid regions, WUE is closely related to SM0–10cm, VPD, SM10–40cm, 
and SM40–100cm. The regional WUE is negatively correlated with SM (0–10 cm, 10–40 cm, 
and 40–100 cm), while positively correlated with VPD, of which the areas with significant 
Rmax accounted for 41.24%, 15.81%, 9.74%, and 7.71% of the humid regions, respectively. 
In particular, the SM0–10cm shows a strong negative response to WUE and is weakened 
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Figure 10  Spatial patterns of the correlations between WUE and driving factors in Inner Mongolia from 2001 to 
2020 (a. Wind speed (WS), b. Vapor pressure deficit (VPD), c. Temperature (Tem), d. Precipitation (PRE), e. 
Terrestrial water storage (TWS), f. Soil moisture 0–10 cm (SM0–10cm), g. Soil moisture 10–40 cm 
(SM10–40cm), h. Soil moisture 40–100 cm (SM40–100cm), i. Soil moisture 100–200 cm (SM100–200cm)) 
 

 
 

Figure 11  Spatial distributions of maximum correlation coefficients between WUE and driving factors in Inner 
Mongolia from 2001 to 2020 (a. Maximum correlation coefficients (Rmax), b. Corresponding driving factors (1, 2, 
3, …, 9 represent the correlations of WUE with temperature (Tem), precipitation (PRE), wind speed (WS), vapor 
pressure deficit (VPD), terrestrial water storage (TWS), soil moisture 0–10 cm (SM0–10cm), soil moisture 10–40 
cm (SM10–40cm), soil moisture 40–100 cm (SM40–100cm), and soil moisture 100–200 cm (SM100–200 cm), 
respectively. A negative value denotes a negative maximum correlation, while a positive value indicates a positive 
maximum correlation in (b).) 
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with increasing soil depths (Figures 11 and 12b). In arid regions, the WUE is primarily sen-
sitive to changes in VPD and precipitation more than the other factors. The WUE is nega-
tively correlated with VPD, while positively correlated with precipitation, of which the re-
gions with significant Rmax accounted for 13.55% and 8.94% of arid regions, respectively 
(Figures 11 and 12c). This result reveals that the increase in VPD and precipitation had a 
negative and positive effect on vegetation WUE under arid conditions. Therefore, when at-
mospheric drought occurs in arid regions, it has a significant influence on local water re-
sources and productivity. 

 

 
 

Figure 12  The significance statistics (p<0.05) for the maximum correlation coefficients between WUE and 
driving factors (a. Entire Inner Mongolia, b. Humid regions, c. Arid regions) 

 

3.5  Determining the threshold of water carbon coupling for vital driving factors 

To further explore the specific effects of the key dominating factors (SM0–10cm, VPD, pre-
cipitation, SM10–40cm, and SM40–100cm) regulating WUE, the coupling of WUE with the 
changes in these factors were analyzed. The results show that the relationships between 
WUE and the key driving factors are non-linear (Figure 13). The WUE along with variations 
in VPD exhibited an “increase-decrease-increase” model. When VPD was less than 0.36 kPa, 
WUE and VPD are positively correlated and WUE increased with the increasing VPD. 
When VPD reached approximately 0.36 kPa, the WUE was at the highest value. When the 
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WUE was greater than 0.36 kPa, WUE and VPD show a significant negative correlation and 
WUE decreased with the increasing VPD (Slope=–1.231, R2=0.496, p<0.01), while VPD 
great than 1.1 kPa, the WUE once more showed an increasing trend. For precipitation, when 
the precipitation in Inner Mongolia was less than 426 mm, there is a significant positive 
correlation between WUE and precipitation (R2=0.917, p<0.01), the WUE increased with 
precipitation, where for every 100 mm increase in annual precipitation, WUE increased by 
0.5 gC m‒2 mm‒1. When the precipitation was 426 mm, the WUE reached its peak and  

 

 
 

Figure 13  Relationships between WUE and the key dominant factors for Inner Mongolia (a. Precipitation (PRE), 
b. Vapor pressure deficit (VPD), c. Soil moisture 0–10 cm (SM0–10cm), d. Soil moisture 10–40 cm 
(SM10–40cm), e. Soil moisture 40–100 cm (SM40–100cm)) 
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showed stationary behavior, but precipitation was higher than the 426 mm critical value, 
WUE decreased with increasing precipitation, decreased by 0.05 gC m‒2 mm‒1 for every 100 
mm increase (R2=0.008, p<0.05). The soil moisture was the most important factor for WUE 
in humid regions. When the soil moisture at a depth of 0–10 cm roughly reached 0.25 m3 
m‒3, the regional WUE has the highest peak value. Moreover, we observed that the 
SM0–10cm and precipitation exhibited relatively consistent variation patterns, this illus-
trates that precipitation may be made greater contributions to SM0–10cm variations than 
depth soil moisture (SM10–40cm and SM40–100cm). In addition, we found that depth soil 
moisture (SM10–40cm and SM40–100cm) variations are relatively complex and exhibited 
two‒peak distributions. When the soil moisture at a depth of 10–40 cm and 40–100 cm was 
separately reached 0.28 m3 m‒3 and 0.26 m3 m‒3, the water use efficiency of vegetation 
reached the maximum value, which indicates that when the soil moisture within this layer 
arrived at this critical value, it was beneficial to the ecosystem carbon and water exchange. 

4  Discussion 

4.1  Evaluation of the griddle GPP and ET datasets 

The performance of the WUE depends on the accuracy of both the GPP and ET estimates. 
Thus, it is necessary to evaluate the reliability and accuracy before using these products 
(Zhang et al., 2015). Our results show that all gridded products have a good performance. 
For GPP, the four GPP products generally overestimated GPP at the flux tower sites, of 
which the overestimation by the GLASS product was the most prominent, with a bias of 
–0.48. For ET, the GLDAS, MODIS, and FLDAS products underestimated the ET at the flux 
tower sites, which is in agreement with previous studies for MODIS (Hu et al., 2015; Yang 
et al., 2021), while GLEAM overestimated the ET at the flux tower sites (Figure 7f). This 
underestimation or overestimation of GPP and ET may be related to relatively few flux tow-
er observation sites in the study areas and a mismatch between the extraction range of prod-
uct data and the observation range of flux towers. Our results also revealed that the GLDAS 
product showed greater uncertainty compared with GLEAM, MODIS, and FLDAS (Figure 
5), which may be related to the differences in the employed model algorithms, parameters, 
and forcing data used to generate the different products. Yao et al. (2018) and Li et al. 
(2021a) suggested that the ET products quality is affected by the differences in model algo-
rithm and parameterize, as well as the used forcing data. Miralles et al. (2016) found that the 
GLEAM product has relatively better performance in most vegetation types and climate re-
gimes around the world. To further verify the effectiveness of the WUE, the WUE calculated 
by the GOSIF-GPP and FLDAS-ET was compared with the WUE calculated by the 
GOSIF-GPP and GLEAM-ET, the result shows that the spatial distribution of both WUEs 
has a good consistency (Figure S1). 

4.2  Spatial heterogeneity and trends of WUE in Inner Mongolia 

Our results show that the WUE in Inner Mongolia decreases from the northeast to the 
southwest, which result is consistent with Li et al. (2021a). The higher WUE values were 
found in the high coverage and within humid climatic zones. Lower WUE values were found 
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in the low coverage and within arid and semi-arid climate zones. The WUE of the forest 
biome is higher than that of meadow steppe, cropland, shrub, typical steppe, and desert 
steppe, which is consistent with previous research results (Bai et al., 2020; Zhao et al., 2020; 
Li et al., 2021a). This may be related to physiological characteristics, physiological structure, 
and living conditions of different vegetation types. Forest had a high carbon sequestration 
capacity (Xiao et al., 2013). Meanwhile, the canopy closure of the forest causes small varia-
tions in the air temperature, ground temperature, and wind speed that did not enhance the ET 
(Li et al., 2021a). For these reasons, the WUE of the forest is the highest. In addition, we 
also found that the regional GPP and ET all showed a significant increasing trend, increasing 
change rate of 5.22 gC m‒2 yr‒1 a‒1 and 4.18 mm yr‒1 a‒1, respectively (Figure S2). But the 
regional WUE showed a non‒significant decreasing trend with a value of –0.0016 gC m‒2 
mm‒1 a‒1 (P=0.491), this decreased WUE may be caused by the synergistic effect of GPP 
and ET. The regional decreasing trend mainly occurs in the northwest of Alxa, eastern Xil-
ingol, northern Xingan, northern Chifeng, and central Hulunbuir (Figures 8 and S1). This 
may be related to human activities (e.g., land cover changes) and shifts in species composi-
tion or abundance (Liu et al., 2012; Du et al., 2019). For example, WUE declines in the 
Xilingol region were caused by large-scale open-cut coal mining which results in reduce 
land surface cover and therefore accelerates ecosystem evapotranspiration processes (Rong 
et al., 2019). Hence, we suggest should be strengthening the prevention and protection of 
vegetation in these regions, to prevent the occurred vegetation degradation.  

4.3  The driving factors of spatial heterogeneity of WUE in Inner Mongolia 

The partial correlation analysis showed that the WUE in the arid and humid region was 
mostly controlled by ET than GPP (Figure S3). This result is in contrast to prior studies that 
WUE variability in humid regions was controlled by GPP (Yang et al., 2016; Liu et al., 
2019). Our results indicate that precipitation is one of the dominant factors in controlling 
WUE in arid regions (Figure 10), which is consistent with previous studies (Wagle and Ka-
kani, 2012; Bai et al., 2020). We found that an increase in precipitation has a positive re-
sponse to WUE in arid regions. This may be caused by an increase in precipitation alleviates 
water stress and thus improves plant productivity, precipitation maybe was also be con-
sumed by soil evaporation and lead to an increase in ET. However, the increased GPP was 
higher than ET, result to increase in WUE (Niu et al., 2011; Liu et al., 2015; Guo et al., 
2019b). Meanwhile, Zhang et al. (2016) found that changes in GPP are also closely linked to 
changes in precipitation-induced ET. Increased precipitation in humid regions negatively 
contributed to WUE. Increased precipitation in humid regions can enhance canopy intercep-
tion and soil evaporation (Liu et al., 2015). Meanwhile, increased precipitation usually being 
accompanied by a reduction in temperature and solar radiation, which can restrict vegetation 
growth and photosynthesis (Mao et al., 2012; Liu et al., 2015), which leads to an increase in 
ET greater than carbon uptakes to negatively effect on WUE. In addition, we found that the 
precipitation threshold of about 426 mm, while Liu et al. (2015) found a threshold value of 
around 500 mm in China areas.  

Our results indicate that the VPD is an important determinant for controlling the dynamic 
changes of WUE, especially in water-limited areas (such as arid regions) where WUE is 
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more sensitive to VPD (that is atmospheric drought) than to soil moisture and precipitation 
(Figure 12c). It was found that the WUE was negatively correlated with VPD, indicates that 
the aggravation of atmospheric drought reduces WUE, which may be due to higher VPD 
leading to dramatic increases in ET, including both soil evaporation and vegetation transpi-
ration (Liu et al., 2015; Wu et al., 2019; Li et al., 2021b). On the other hand, high VPD may 
cause some stomatal to close and inhibit photosynthetic rates (Novick et al., 2016; Ding et 
al., 2018; Wu et al., 2019; Li et al., 2021b; Zhao et al., 2021), these effects together may 
lead to the negative response of VPD to variations in WUE. However, in humid regions, the 
VPD is positively correlated with WUE, which demonstrates that higher VPD leads to in-
creased WUE. This may be due to the fact that higher VPD can induce stomatal closure to 
reduce water loss through transpiration, resulting in decreased ET faster than GPP (Liu et al., 
2019). There is another possibility that the higher VPD stimulates plant water use strategy 
and maintain keeps stomata openness of plants to increase GPP (Chen et al., 2021), these 
reasons may be leads to positive effects of VPD on WUE (Frank et al., 2015; Li et al., 
2018c). In addition, our results found a VPD threshold of about 0.36 kPa in Inner Mongolia. 
However, the VPD in the southwest to northeast aridity gradient over China is a threshold of 
about 0.8 kPa (Bai et al., 2020). These differences may be caused by the intensity of drought 
in different regions.   

Additionally, we also found that WUE variability in arid regions is regulated by the pre-
cipitation and VPD, whereas WUE in humid regions is most affected by soil moisture, in 
particular SM0–10cm. This difference may be related to the root characteristics and water 
use strategies of different vegetation types. The arid areas are mostly grassland, and herba-
ceous plants have relatively shallow root systems, which limits the obtaining of water from 
groundwater sources, and thus they are more sensitive to precipitation (Liu et al., 2012; Bai 
et al., 2019). In humid areas, the vegetation types are mostly forest, cropland, and shrubs, 
and these have deeper root systems, with their water supplied by soil moisture from the ca-
pillary fringe, root zone, and groundwater (Liu et al., 2012). Previous studies have shown 
that excessive soil water content can cause root zone hypoxia and results in the 
down-regulation of stomatal conductance and photosynthesis (Li et al., 2018c). Excessive 
soil water input can also promote a significant increase in abiotic water consumption (Liu et 
al., 2019), which leads to an increase in ET greater than carbon uptakes to negatively affect 
WUE. In short, the response of WUE to various factors was different among different vege-
tation types and climate zones. 

4.4  Uncertainties and future studies   

We validated the accuracy of four GPP and ET products using measurement data from three 
flux tower sites. Although all gridded products have a good performance, there are still some 
uncertainties in this study. First, the spatial resolutions of the multi-source remote sensing 
products were not exactly the same, using different resolution products could lead to uncer-
tainties in the expected results. Second, uncertainties would arise from a mismatch between 
the extraction range of the product data and the observation range of flux towers. Third, 
there is relatively little flux tower observation data in the study area, which leads to large 
uncertainties in the accuracy of the evaluation products. In this study, we only discussed the 
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effect of both climate change and soil water content on the variability of WUE. However, the 
WUE of ecosystems is affected by many other factors including Leaf area index (LAI) 
(Huang et al., 2010), drought (Ma et al., 2019), CO2 fertilization (Wu et al., 2019; Liu et al., 
2020), stomatal conductance (Xu et al., 2020), and land cover change (Li et al., 2021a). 
Therefore, it is necessary to further explore other factors affecting the WUE. Our study also 
points out that VPD and soil moisture acts as important environmental factors for under-
standing carbon-water coupling in Inner Mongolia. Therefore, in the future, to furthermore 
consider VPD and soil moisture in predicting and simulating terrestrial ecosystem responses 
to future climate change. 

5  Conclusions 

Ecosystem WUE is a vital indicator to explore the interactions between carbon and water 
cycles in terrestrial ecosystems, and accurate estimates of ecosystem WUE can contribute to 
quantifying the carbon-water exchange of ecosystem function under climate change. The 
result shows that the spatial pattern of four GPP and ET products gradually decreases from 
the northeast to the southwest. Meanwhile, an increasing trend for all GPP and ET products 
over the study area except for the ET estimated from GLDAS products. Using flux tower 
observations data validated four GPP and ET products found that GOSIF and FLDAS have a 
good performance and therefore utilize them to estimate WUE. The spatially WUE showed 
decreasing trends accounting for 55.15% of the entire region, where distributed in the north 
of Xingan, north of Chifeng, central Hulunbuir, east of Xilingol, and northwest of Alxa. In 
addition, the results revealed that the SM0–10cm, VPD, and precipitation play an important 
role in regulating variations in WUE over Inner Mongolia. In arid regions, the WUE is 
mostly controlled by VPD and precipitation. An increase in VPD and precipitation has nega-
tive and positive effects on WUE. In humid regions, variations in WUE are closely associ-
ated with SM0–10cm, VPD, SM10–40cm, and SM40–100cm, in which SM0–10cm has the 
most negative influence on WUE and is weakened with soil depth. These findings improve 
our understanding of arid and semi-arid region WUE variability and its driving mechanisms 
and provide vital insight into predicting the feedback from ecosystems to climate change. 
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Table S1  Descriptions of the flux tower sites in this study 

Site ID Nation Site name Vegetation types Longitude (°E) Latitude (°N) Period 

CN-Du2 China Duolun grassland (D01) Steppe 116.2836 42.0467 2006–2008 

CN-Du3 China Duolun degraded meadow Steppe 116.2809 42.0551 2009–2010 

  China Inner Mongolia Steppe 116.404 43.3255 2004–2005 

 
 

 
 

Figure S1  Based on GOSIF-GPP and GLEAM-ET obtained average WUE (a) and trends (b) over Inner Mongo-
lia for the period 2001–2020 
 
 

 
 

Figure S2  Interannual variations in GOSIF-GPP (a) and FLDAS-ET (b) across Inner Mongolia during 
2001–2020 
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Figure S3  Spatial pattern of the partial correlation coefficient between WUE and GPP (a), WUE and ET (b), and 
their ratio (c) in Inner Mongolia from 2001 to 2020 
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