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Abstract: Coal mining can cause significant local environmental damage while driving the
regional economy of an area. The key index of net primary productivity (NPP) measures the
amount of energy made available in an ecosystem and serves as a useful metric for understanding
vegetation restoration in mining areas. This study used a CASA model to estimate the vegetation
NPP of the Ordos area of the Shendong coal fields from 2000 to 2019. Model output, human factors,
and regional meteorological data were subjected to trend analysis, significance testing, partial
correlation analysis, and residual analysis. The NPP data generated by a CASA model inversion
approximated measured data to a reasonable degree. The average annual NPP of the vegetation in
the study area from 2000 to 2019 was 44.51 g C /m2 a. In general, NPP showed a fluctuating
upward trend with slower increases before 2011 and more rapid increases after 2011. The trend
exhibited considerable spatial heterogeneity. Areas with increasing NPP accounted for 21.54% of
the study area and occurred mainly in Dongsheng District, Kangbashi District, and areas
bordering Ijinhoro Banner. Analysis detected consistent spatial variation between NPP and each
factor in the study area. NPP is positively correlated with precipitation and human activities, and
negatively correlated with air temperature. The change in vegetation cover depended on both
human activity and meteorological conditions. In terms of the strength of influence on vegetation
NPP, human activity exceeded climate, followed by temperature and precipitation. Although the
NPP of vegetation in the region directly affected by coal mining shows a trend of improvement, it
is still lower than that in the natural growing region. In the next step, the ecological restoration of
vegetation should be further strengthened to achieve regional ecological balance.
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1. Introduction
Modern civilization depends strongly on hydrocarbon-based energy sources (Fang

et al., 2018), which have generally progressed from wood to whale oil, to coal, to oil and
gas. Coal has driven industrialization, electrification, and transportation to support the
expansion of human survival and material culture (Jiang et al., 2008). Countries
experiencing rapid economic development based on coal energy sources find their
economic base and stability to be tied to coal production (Yao et al., 2012). The Inner

Corresponding author: Chunxing Hai (1963-),male,professor.E-mail :hcxjs@imnu.edu.cn
Co-corresponding author: Dandan Zhou(1982-),female, Associate professor .E-mail:zhoudandan@imnu.edu.cn
Foundation item: Technology of site quality improvement in mining subsidence area(Inner Mongolia Autonomous Region key
research and development project.Number: ZDZX2018058)
The author: Jia Ke (1987-), male, Ph.D student.E-mail :1303236349@qq.com

Citation: Ke, J.; Zhou, D.; Li, B.

Temporal and spatial variation in

net primary productivity of the

Shendong coal mining area, Inner

Mongolia Autonomous Region.

Sustainability 2022, 14, x.

https://doi.org/10.3390/xxxxx

Academic Editor(s):

Received: date

Accepted: date

Published: date

Copyright: © 2022 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(http://creativecommons.org/licenses

/by/4.0/).



Sustainability 2022, 14, x FOR PEER REVIEW 2 of 19

Mongolia Autonomous Region is a key area of China's westward migrating coal mining
strategy (Xiao et al., 2019). Its coal resources are widely but densely distributed in the
Mengdong and Mengzhong mining areas (Wang et al., 2012). Together, these represent a
hundred million tons of the national large coal base. The Mengzhong mining area is
located in Ordos City, Inner Mongolia and includes the Shendong coal fields. The area
hosts thick, undeformed coal seams suitable for large-scale, mechanized subsurface
mining. The area overlying the mines represents an ecologically fragile area subject to
subsidence and collapse. In the case of subsidence and collapse, mining of subsurface
coal seams removes support and thereby disrupts the overlying surface. Mine
subsidence has harmed vegetation, soil, and other aspects of the local ecosystem.
Negative environmental detract from the economic benefits of large-scale mining (Li et
al., 2009). Over time, the original ecological vegetation is gradually degraded and only
distributed in sporadic areas. Relatively speaking, the proportion of artificial vegetation
increases year by year (Li et al., 2011). Vegetation represents a major component of
terrestrial ecosystems and a key factor for measuring their health (Ge et al., 2021). Net
vegetation primary productivity (vegetation NPP) tracks energy flows and overall
ecosystem health. NPP also measures an area’s contribution to the global carbon cycle.

To date, the primary methods for estimating NPP have been field measurements or
model simulations. Field measurements have traditionally used sample surveys and
distributed observations of above-ground and soil biomass (Fan et al., 2012). The
expenses and technical requirements of this method preclude its use over wide areas
and longer time intervals. Meanwhile, NPP model simulation methods generally use one
of three approaches. The models themselves are referred to as climate-related statistical
models (statistical methods), light energy utilization models (parametric models), and
physiological and ecological process models (mechanistic models) (Zhu et al., 2005).
Each model type carries with it advantages and drawbacks. Climate models produce
results with relatively high uncertainty terms because they do not consider
vegetation-related information (Zhou et al., 1995). Light energy utilization models
include light energy transfer and conversion processes, but these remain somewhat
uncertain (Field et al., 1995). Process models require many parameters that are either
uncertain or difficult to obtain (Wang et al., 2002). Mechanistic models are complex and
may use inaccurate assumptions. While uncertainties also affect NPP modelling
approaches, researchers adopt these due to their better coverage and greater scope
relative to traditional field surveys. NPP modelling can effectively constrain the
understanding of regional ecological health (Li et al., 2021). Due to its utilization of
satellite remote sensing technology, the CASA model has been widely used in
estimating NPP in terrestrial ecosystems and in global carbon cycle research. The CASA
model uses vegetation photosynthetic processes and light energy utilization as a basis
(Fyllas et al., 2017) for estimating dynamics and spatiotemporal variability in NPP at the
regional and global scales (Potter et al., 1993).

For mining areas, NPP can be used as a unified scale standard to measure the
changes to the ecological environment in mining areas. By accurately estimating the
biomass in the mining area, the spatial pattern, changing trend characteristics and
response to climate change of vegetation NPP can be quantitatively analyzed, thereby
reflecting the ecosystem health of the mining area. Monitoring variation in vegetation
NPP can expand the understanding of the effectiveness of restoration and mitigation
strategies. The results are of great significance for understanding the mechanisms of the
effect of climate change on the vegetation change process in the terrestrial ecosystem in
the mining area, the ecological restoration of the mining area, and effective governance
(Zhang et al., 2020).

Researchers have adopted a range of model approaches for studying vegetation or
other ecological parameters in coal mining areas (Hao et al., 2011; Sun et al., 2019;
Kishore et al., 2016; Wang et al., 2016; Kang et al., 2014). Additionally, the research
mainly focuses on analyzing the relationship between the temporal and spatial variation
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characteristics of NPP and coverage in mining areas and their influencing factors. For
example, Hao Chengyuan and other scholars used EOS/MODIS satellite remote sensing
data to analyze the NPP of the ecosystem in the Lu'an mining area from 2001 to 2006,
and conducted research and analysis from the perspective of time and space. Human
activities such as farming are closely related, and the spatial heterogeneity is mostly
related to natural factors such as annual precipitation. However, combined with
domestic and foreign research, few studies have addressed NPP in the Shendong mining
area, and very limited historical data are available. At the same time, the Shendong
mining area (Ordos) area mostly involves mechanized underground mining. Compared
with other mining areas, studying the changes in the surface vegetation NPP can
provide corresponding research reference for other mining concentrated mining areas.

This study used the CASA model to simulate the spatio-temporal dynamics of the
vegetation NPP in the Shendong mining area of Inner Mongolia from 2000 to 2019. The
study also analyzed climate factors to determine both the qualitative and quantitative
aspects of environmental health in Shendong. The results can help inform mitigation
and restoration strategies and promote the sustainable and scientific development of the
land and its resources.

2. Materials and methods
2.1. Study area

The study area is located within the broad northward arc of the Huang He River, in
a zone between the Ordos Plateau and the northern edge of the northern Shanxi Plateau.
To the north lies a transition zone abutting the Maousu Desert and to the south lies an
eastern section of the northern edge of the Loess Plateau in northern Shanxi (Shao et al.,
2022). As a typical hill and gully terrain, most of the area consists of sand dunes and
other arid climate landforms. The terrain gradually increases in elevation from southeast
to northwest with a series of higher-elevation drainage divides occurring roughly in the
middle of the study area. The elevation ranges from 1200 to 1400 meters. The climate is
categorized as a middle temperate continental climate. The winter is long and cold and
the summer is hot and short. Temperatures in spring and autumn change sharply. The
relatively low annual rainfall is typically discretely concentrated and the annual rainy
season varies greatly. Rain depends on seasonal winds from the south in the summer,
from the east in late autumn, and from the northwest in early spring. The annual
average precipitation in the area is 320~400mm, and the inter-annual variation of
precipitation is great. The precipitation in wet years is about 3 times that in dry years.
The annual distribution is uneven, and the precipitation is small and concentrated,
mainly in June to September, accounting for about 3/4 of the whole year, mostly in the
form of heavy rain, with strong bursts. The annual average temperature is 7.3 °C, the
annual extreme maximum temperature is 38.8 °C, and the annual extreme minimum
temperature is -28.1 °C. The surface of the study area is mostly hard-beamed land with
low organic matter content. The soil texture is sandy soil or sandy loam, the soil
mechanical composition is coarse, and the soil texture is loose. The vegetation in the area
is arid-semi-arid grassland vegetation, sandy plants dominate, and the vegetation
coverage is low.

As shown in Figure 1, the study area includes 87 subsurface coal mines, including
the Liuta Coal Mine, Shangwan Coal Mine and so on. Combined with the current
situation of the study area, a direct impact area of well mining and a natural recovery
area are set up in the study area. The geometric centers of the two areas have a
difference of 29′1" in longitude, 10′05" in latitude, and a distance of 4.7 km between the
geometric centers. They are both hill and gully landforms, and have the same geological
origin, with similar elevations and similar slopes.
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Figure 1. Overview of the study area

2.2. Data sources

2.2.1. Remote sensing data
This study used NDVI (MOD13Q1,250m, 16d) and NPP data (Zhao et al., 2005)

(MOD17A3,1Km, 1a) downloaded from U.S. National Aeronautics and Space
Administration (NASA) websites. The MODIS Reprojection Tool was used to convert
(Geo TIFF) and reproject (WGS84/Albers Equal Area Conic) the two datasets. Monthly
NDVI datasets for the study period were integrated with annual NPP data using batch
methods (Han et al., 2019) to obtain MODIS NPP and NDVI time series covering the
study area for the duration of the study period (2000–2019).

2.2.2. Measured NPP data
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Due to the challenges and limitations posed by measuring NPP in the field, biomass
conversion NPP data are usually used instead of field NPP data for data model
validation. This research measured biomass in 19 plots representing the topography of
the study area from July to August 2021. Considering the diversity of vegetation types in
the study area, 25 × 25 m was selected as the large plot. In these areas, three 1 x 1 m
grassland plots were selected for biomass sampling, and the average value was later
taken as grassland biomass.

Biomass was collected, weighed immediately, labeled and transported back to the
laboratory for analysis. In the lab, biomass dry weight data were obtained after samples
were dried at 75 °C for 12 hours. NPP was estimated from each sample square as the
proportion of above-ground biomass relative to below-ground biomass, assuming a
NPP conversion coefficient of 0.475 (Li et al., 2021). Trees within large plots included
sand willow and poplar trees. We counted the number of trees in each plot and
estimated the size of each individual from its diameter at 1.3 m above the ground.
Biomass and corresponding NPP of the forested land was estimated according to the
algorithm proposed by Fan Wenyi and others (Fyllas et al., 2017). Finally, the coverage
of grassland and trees was integrated into the total NPP area of each plot. NPP per unit
area was determined by combining the area of the large square.

2.2.3. Meteorological data
Meteorological data were obtained from the China Meteorological Science Data

Sharing Service Network (http://cdc.cma.gov.cn). The daily data of precipitation and
temperature from 2000 to 2019 were collected from six standard meteorological stations
in the study area and its surrounding areas. After calculating monthly precipitation and
average temperature data by means of summing and averaging methods, we used
ANUSPLIN to break the data into a grid to match the projection for the study area and
resolution of NPP data.

2.2.4. Other data
Administrative division data came from the Inner Mongolia Autonomous Region

Territorial Space Planning Institute. Vegetation cover data were obtained from the
European Space Agency (https://maps.elie.ucl.ac.be/CCI/viewer/) (Guang et al., 2019).
Distribution maps of subsurface mines came from the Inner Mongolia Geological Survey
Planning Institute.

2.3. Methods
2.3.1. Optical Energy Utilization Model (CASA model)

The Carnegie-Ames-Stanford Approach (CASA) is a light energy utilization model
proposed by Potter in 1993. This model is a mechanistic model that estimates vegetation
NPP based on the vegetation’s physiological processes. Meteorological data inputs
include solar radiation, temperature, and precipitation. Remote sensing data inputs
include the vegetation index and empirical data such as maximum light energy
utilization. The model uses these to estimate the maximum primary productivity of
vegetation. The present study utilized a modified CASA model (Li et al., 2009). The
specific NPP formula was:

NPP(x, t) = APAR(x, t) × ε(x, t) （1）
where APAR(x, t) represents the effective photosynthetic radiation absorbed in pixel x
during month t. The term ε(x, t) represents the actual optical energy utilization rate of
pixel x during month t.

The formula used to calculate photosynthetically active radiation was:
APAR(x, t) = SOL(x, t) × FPAR(x, t) × 0.5 （2）

where SOL(x, t) represents the total solar radiation (MJ/m2) of pixel x during month t.
The term FPAR(x, t) represents the vegetation’s absorption ratio of photosynthetically
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active radiation and the constant 0.5 indicates the proportion of effective solar radiation
to total solar radiation.

The actual light energy utilization rate was calculated as:
ε(x, t) = �1 (x, t) × �2 (x, t) × W(x, t) × ε��� （3）

where �1 (x, t) and �2 (x, t) represent the effect of high and low temperatures on the light
energy conversion rate. The term W(x, t) indicates the influence of water conditions on
the light energy conversion rate and ε��� represents the maximum light energy
utilization of vegetation in the ideal state. For ε���, the research results of Professor Zhu
Wenquan are cited in this paper (Zhu et al., 2007).

2.3.2. Theil–Sen Median trend analysis with the Mann–Kendall non-parametric test
This study used statistical methods with good associative properties to determine

trends in long-term data series. The Theil–Sen Median (sen) is a robust, nonparametric
trend calculation method. Often used in trend analysis of long-term data series (Zhang et
al., 2021), the method is computationally efficient and insensitive to measurement errors
and outlier data. The method does not require the data to obey a certain distribution, nor
does it amplify error. The formula for the trend estimation is:

slope = median ����−����

�−�
, 2000 ≤ i < � ≤ 2019 （4）

where the size of the slope term indicates the trend in vegetation with NPP> 0 for an
upward trend and <0 for a downward trend.

The Mann–Kendall test is a non-parametric statistical test (M-K) originally
proposed by Mann in 1945 and then further improved by Kendall and Sneyers. The M-K
test does not require measurements to obey a normal distribution or linear trend.
Missing values and outliers do not strongly affect results. The test is widely used in the
trend analysis of long-term data series to evaluate the significance of vegetation NPP
trends. The test statistic S is calculated as:

S＝ �=1
�−1

�=�+1
� ��� ���� − ������ （5）

where the term sgn represents a symbolic function calculated as:

��� ���� − ���� =
1 ���� − ���� > 0
� ���� − ���� = 0
−1 ���� − ���� < 0

（6）

The test statistic Z was used for the trend test as follows:

� =

�
���(�)

� > 0

� � = 0
�+�
���(�)

� < 0
（7）

The function Var was calculated as:
��� � = �(�−1)(2�+5)

18
（8）

where n is the number of data in the sequence.
For a given confidence interval (significance level) α, absolute values of Z equal to

or exceeding 1.65, 1.96, and 2.58 give respective significance levels of 90%, 95%, and 99%.
If | Z |≥ Z1-α/2, the assumption of an upward or downward trend cannot be rejected
(the null hypothesis is not obtained). Positive values indicate an upward trend, and
negative values indicate a downward trend. According to the t-test cutoff value, when |
Z |> 1.65, the increasing or decreasing trend is weakly significant at the 0.1 level. When |
Z |> 1.96, the increasing or decreasing trend is significant at the 0.05 level. When | Z |>
2.58, the increasing or decreasing trend is extremely significant at the 0.01 level.

2.3.3. Partial correlation analysis
Both multivariate and partial correlation coefficients were calculated. The

multivariate correlation coefficient was calculated as follows:
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��� = �=1
� [(��−��)(��−��)]�

�=1
� [(��−��)2

�=1
� [(��−��)2� ]�

（9）

where ��� represents the correlation coefficients for the x and y time series. The

�� term represents NPP and �� represents the average temperature or precipitation in
year i over a total of n years. The term �� represents annual average NPP, and
�� represents average annual temperature or precipitation.

Partial correlation coefficients between NPP and temperature and NPP and
precipitation were calculated by using pixel-based spatial analysis and the following
formula:

���� =
���−������

1−���
2 +(1−���

2 )
（10）

where ���� represents the partial correlation coefficient between variable j and variable k
after variable l is fixed. The terms ���, ���, ��� ��� are correlation coefficients for the
variables j and k, j and l, and k and l, respectively.

2.3.4. Residual analysis of multiple regression results
The analysis also used a multiple regression residual analysis method proposed by

Evans and Geerken (Mike et al., 1999; Hao et al., 2018). Multiple linear regression models
were used to fit the vegetation NPP according to the variation in meteorological factors.
Differences between fitted and observed vegetation NPP were treated as an artificial
factor to constrain the impact of climate change and human activity on changes in
vegetation cover (Deng et al., 2018). The calculation ran as follows:

ε = ������� − ������ （11）
where ε is the residual error, ε > 0 indicates positive effects of human activity,
ε < 0 indicates negative effects of human activity, and ε = 0 indicates negligible effects
of human activity. The term ������� represents the observed vegetation NPP, while
������ represents the predicted NPP.

2.3.5. Partial least-squares regression method (PLS)
Modeling by partial least-squares regression method (Wang et al., 2000) combines

the advantages of principal component analysis and multivariate regression. This
method used a variable projection importance discrimination index (VIP) value
calculated (Perez-Enciso and Tenenhaus., 2003) as:

���� = � �=1
�

� �2(��, ��)���
2� /� �=1

�
� �2 ��, ���� （12）

where N represents the number of independent variables, and � is the single dependent
variable. The term �2(��, �ℎ) represents the determination coefficient for both �� and �ℎ,
n is the number of components, �� is the ith component of the independent variable, ��
is the kth component of the response variable, and ���

2 represents the contribution of
each independent variable pair, �ℎ . The independent variable of VIP> 1 is generally
interpreted as representing a significant explanation for the dependent variable. For 0.8
<VIP <0.8, VIP is taken to carry no explanatory significance. Otherwise, the larger the
VIP value, the greater its explanatory significance.

3. Results
3.1. Model validation

Spatial comparison of observed data with the data generated by the CASA model
provided a means of evaluating accuracy. Figure 2 shows the results of the correlation
analysis of observed and simulated NPP, for which R2 = 0.55 (P <0.01). The observed
NPP data apparently agree with modeled data.
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Fig. 2. Comparison between simulated and observed NPP Fig. 3. Comparison between simulated and Modis NPP
Given the temporal mismatch between the model study period and the timing of

observed data acquisition, we also used MODIS NPP finished product data to further
validate the model data. For this procedure, 55 sample points within the study area were
randomly selected for fitting analysis. As shown in Figure 3, the R2 estimated between
the MODIS NPP product value and the modeled value was 0.66 (P <0.01). This indicates
a high degree of consistency and that CASA can generate reasonably accurate estimates
of NPP. It can better reflect the spatial distribution and interannual variation of NPP in
Shendong mining area, and the simulation results have better accuracy than product
data.

3.2. Spatiotemporal distribution of NPP in the Shendong mining area
According to the monthly NPP data simulated by CASA model, the total value of

NPP over the time period was obtained, and then the average value of NPP in the study
area was taken as the annual value of NPP over the time period. As shown in Figure 4,
vegetation NPP generally fluctuated between 2000 and 2019, with slower increases in
2000–2011 and faster increases in 2011–2019. The annual average NPP over the entire
study period was 44.51g C/m2 a. The propensity rate was 1.06/a with a multiannual
mean trough year in 2011 and a peak in 2018 (P <0.01). These values differed by 37.04 g
C/m2 a. Annual average NPP distributions appear to have generally increased in the
study area (Figure 5). Regional NPP estimates were divided into five categories using a
natural fracture method. The average annual NPP for the entire region was 40 to 60 g
C/m2 a. This value represented 57.96% of the entire study area (the largest proportion).
An additional 34.12% of the study area shared 20 to 40 categories, and 0.28% (minimum
category) shared >80 categories.
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Figure 4. Interannual variation in NPP for study area from 2000-2019.

Figure 5. Spatial distribution of 20 year average NPP in study area.

Based on the NPP simulation results from 2000 to 2019, this paper used the R
language to conduct Sen+MK trend analysis, and combined it with slope value division
to determine the NPP trend of the study area from 2000 to 2019. As shown in Figure 6,
the multi-decadal trends in NPP show considerable spatial heterogeneity. The areas of
Dongsheng, Kangbashi, and Inkinhoro Banner, representing 21.54% of the study area,
experienced increased vegetation NPP. Pixels representing 78.46% of the study area
experienced decreasing NPP. The MK significance test (Figure 7) indicates that 1.69% of
the study area experienced an extremely significant rise in NPP. Pixels representing
1.33% of the study area experienced a significant rise in NPP. Pixels representing 18.42%
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of the study area experienced only a weakly significant rise in NPP. Pixels representing
0.19% of the study area experienced no significant increase in NPP. Pixels representing
0.01% of the study area experienced a very significant decline in NPP, and 0.12% of the
study area experienced of significant decline in NPP. The spatial distribution of the
significance of trends was consistent with that of the vegetation NPP trend itself.

b

Fig. 6. Trends in NPP changes for the study area Fig. 7. Significant of interannual variation in NPP

from 2000 to 2019 in the study area from 2000 to 2019
The direct affected area and the natural growth area in the past 20 years are listed

one-to-one to determine the response law of the artificial vegetation and the natural
growth area. Figure 8 shows the comparison and fitting curve of the annual NPP values
between the direct affected area and the natural growth area. It can be seen that the
overall net primary productivity of vegetation in both the directly affected area and the
natural growth area shows a fluctuating upward trend, and the change is basically the
same as that in the study area. Among them, the multi-year average value in the study
period of the direct affected area is 48.26 g C/m-2 a-1, and its tendency rate is about 1.44/a,
the multi-year average value in the study period of natural growth area is 48.69 g C/m-2

a-1, its tendency rate is about 1.12/a, and both areas pass the P<0.01 significance test. At
the same time, it is not difficult to see that, compared with the two areas, the vegetation
NPP in the area directly affected by coal mining was mostly smaller than that in the
natural recovery area before 2009.

This may be related to the leap forward in development in this area from 1999 to
2009, which led to the decline of vegetation NPP in the area directly affected by coal
mining.

After that, the vegetation NPP in the areas directly affected by coal mining has
gradually become larger than the vegetation NPP in the natural recovery area. This may
also coincide with the impact of the construction of ecological civilization proposed by
China at the 17th and 18th CPC National Congress of the Communist Party of China.
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Figure 8. Change trend comparison of the NPP between the directly affected area and the natural
growth area.

3.3. Meteorological factors
To determine the influence of vegetation NPP in the study area, SIMCA 14.1 was

used, with annual NPP as the dependent variable and annual precipitation and annual
average temperature as the independent variables. We estimated partial correlation
coefficients between annual NPP and annual precipitation and average annual
temperature from 2000 to 2019. As can be seen from Figure 9a,b, significant spatial
differences appeared between NPP and each factor. The partial correlation coefficient for
NPP and precipitation ranged from -0.60 to 0.92. The partial correlation coefficient for air
temperature ranged from -0.72 to 0.77. Correlation of both factors showed both positive
and negative covariance with vegetation NPP. In contrast, precipitation provided
primarily positive correlation coefficients (Figure 9a). Areas positively correlated with
precipitation occur primarily in the west or in scattered areas in the middle and east of
the study area. These account for 92.79% of the total area. Air temperature covaried
negatively with NPP (Figure 9b). Regions with negative correlation coefficients occurred
primarily in western regions or distributed throughout the central and eastern regions.
These represented 78.08% of the total area.

(a) precipitation (b) temperature



Sustainability 2022, 14, x FOR PEER REVIEW 12 of 19

Figure 9. Partial correlation coefficients for annual average temperature and annual precipitation
with NPP from 2000 to 2019.

Vegetation NPP correlated weakly with precipitation in the study area and showed
significant spatial heterogeneity. The correlation coefficients between NPP and air
temperature contrasted those estimated for precipitation and exhibited opposing spatial
distributions. This indicates that the correlation between precipitation and temperature
may jointly affect NPP.

3.4. Effects of human activity
Vegetation NPP can depend on both natural and human factors. Although climate

change may influence NPP in the study area, correlation analysis can only describe the
degree of covariance between NPP and various climate factors, but cannot quantify the
strength of the influence. Along with climate factors, human activity may also strongly
influence NPP. Residual error analysis was used to identify and quantify the influence of
human activity on NPP in the study area. A multiple linear regression model based on
temperature and precipitation data generated fitted NPP values for the study period.
Residual estimates were obtained by calculating the difference between the predicted
and observed values in the study area. Values were then analyzed as potential estimates
of the influence of human activity on NPP in the study area.

Figure 10. Interannual variation in NPP residuals for the study area from 2000-2019.

Based on the results of correlation analysis, this paper selects precipitation and
temperature factors in the current year, establishes a linear regression equation based on
the pixel scale to predict NPP, and obtains NPP time series with only the climate effect,
so as to obtain the residual value, which is the impact of human activities on NPP.
Figure 10 shows the overall trend of the estimated influence of human activity on NPP
from 2000 to 2019. The trend shows a slope of 0.53 per year with considerable variation
around the trend. The impact of human activity on NPP since 2011 appears relatively
high in the study area. This may relate to local environmental protection efforts. Human
influence on NPP from 2015 and 2018 appears relatively weak. This may relate to
meteorological factors in the study area and coupling effects. Figure 11 shows the spatial
distribution of the influence of human activity. Negative values indicate the influence of
human activity on NPP. Only a very limited area experienced a negligible influence of
human activity on NPP. The area where human activity appeared to have enhanced
NPP accounted for 90.86% of the total study area. Intuitively, coal mining areas show
greater human activity influence than other areas.
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Figure 11. Spatial distribution of human activities in the study area from 2000-2019.

3.5. Double impact effects
Partial least squares analysis was used to address multivariate commonality

problems arising from intercorrelated variables (Hou et al., 2015). As shown in Figure
12a, the ability of variables to explain changes in NPP (VIP) ranked as follows: human
activity (1.64)> temperature (0.48)> precipitation (0.27). This indicates that human
activity explains more variation than climate variation does, especially in recent years.
Temperature appears to exert a stronger influence than precipitation on vegetation NPP.
Figure 12b gives regression coefficients for the estimated regression equation of y =
0.024x1 − 19.44x2 + 8.06x3 + 181.97 . The terms x1, x2, and x3 indicate precipitation, air
temperature, and human activity. As seen in Figure 12c, air temperature exerts a
negative effect on NPP, while other factors, including human activity, exert a strong
positive effect indicated by an increase in NPP. These relations suggest that recent
interventions promoting NPP have succeeded.

(a) (b)



Sustainability 2022, 14, x FOR PEER REVIEW 14 of 19

(c).

Fig. 12. PLS analysis of the influence of climate change and human activity on NPP in the study area

4. Discussion
4.1. NPP simulation results

Although the CASA model appears to have provided adequate NPP estimates for
the study area, uncertainties in observed NPP and the resolution of the data may pose
difficulties. Further validation of the CASA NPP can help increase confidence in the
estimated results. Estimates of NPP for this region were therefore compared with
previously generated CASA-generated NPP results as reported by Zhu Wenquan (Zhu
et al., 2007). The results described here also generally resemble those published by Mu
Shaojie (Mu et al., 2013), who performed an inversion of CASA results from the Inner
Mongolia Autonomous Region (Zhu et al., 2005). The results interpreted here are
generally lower than those reported by Xie S.S (Xie et al., 2015), who used a
BLOME-BGC model. The differences among the inversion results may arise from several
sources. Mismatched time intervals or spatial scale may generate different results.
Differences in the models themselves, their parameters, or inversion settings may also
cause variation. Different interpolation methods applied to data and differing scopes of
the study area can introduce uncertainties into meteorological data, which propagate
into spatial results. This study compared NPP results among field observational sources,
model sources, and from previous sources. The results are generally consistent. Previous
research has shown that the CASA model performs NPP inversion, but the current
spatial resolution and temporal duration of data remain limited. The study area is also
covered by only a limited number of meteorological stations. Together, these factors
limit the scope of the study to analysis of only a few factors exerting potential influence
on NPP.

4.2. NPP distribution and influence factor response
Studies have documented the considerable restoration of vegetation since 1980

throughout China, and especially in northern China. Although spatially heterogeneous,
restoration appears to have occurred relatively rapidly (Jin et al., 2020). The present
study detected obvious spatial heterogeneity at regional and local scales. The spatial
heterogeneity arises largely due to human activities. The research area covers urban and
developed areas such as Dongsheng District and Kangbashi. In recent years, urban
development and expansion has included installation of more green space and urban
landscaping. Relative to surrounding areas, results may underestimate NPP values due
to lower original vegetation coverage values. Impacts associated with urban expansion
and mining, including destruction of vegetation, can gradually diminish vegetation NPP
for surrounding areas. Many researchers studying NPP changes have found that they
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jointly depend on human activity and climate. Climate data presently record the rapid
rise in temperatures (Jin et al., 2018). This can increase the release of soil organic matter
and exert catalytic effects on the growth of vegetation (Li et al., 2017). Human activities
such as returning farmland to forest or other ecological restoration efforts can increase
vegetation coverage and productivity (Xin et al., 208). All of these factors can increase
NPP. By contrast, climate change and human activity can also limit vegetation growth or
coverage. Rapid warming and drying in the northwest, for example, likely intensifies
drought, which limits the growth of vegetation in the region. The intensification of
human activities in woodland, grassland, and other types of vegetated areas can also
reduce productivity through reduced biodiversity or other impacts on the ecosystem.

As for the areas directly affected by coal mining and the natural growth areas
involved in this study, the literature shows that by the end of 2019, the Shendong
mining area had invested a total of 269 million yuan in ecological environment
construction (Yang, K.X., 2021). The vegetation NPP in the affected area increases year
by year and gradually surpasses the natural restoration area. However, as shown in this
study, from the perspective of vegetation NPP over the years, under the premise of
continued coal mining in the future, the vegetation ecological restoration in the area
directly affected by coal mining will still be affected. Further strengthening is required.

In the area considered by this study, regional annual precipitation, temperature,
and human activity all increased simultaneously over the past 20 years. The data plotted
in Figures 4, 10, and 13 show that in 2014 and 2018, NPP remained high during the
respective peaks of human activity and precipitation. These years experienced moderate
average temperature values. This suggests that climate change and human activity can
strongly influence regional NPP and its spatial distribution. Air temperature appears to
covary negatively with NPP, while other factors covary positively. Human activity
exerts the strongest positive influence, indicating that increases in NPP reflect effective
recent human environmental interventions, including restoration.

Fig. 13. Variation trends, linear trend, and 5-year moving average of precipitation and average temperature

in the study area from 2000 to 2019
Accelerated urbanization of Dongsheng District, Kangbashi District, and Ejin Horo

Banner undeniably reflects intensified human activity, but the effects of this activity on
NPP have gradually weakened. The Shendong mining area occurs in an ecologically
fragile area. Large-scale mining and human activity have included perennial vegetation
restoration and irrigation with recovered water. The local environment has been
negatively impacted, but mitigation efforts have reduced some of the damage. Economic
development and environmental plans suggest coordinated development of
"underground factory and ground gardens" as research objectives (Wang et al., 2007).
Future research should further quantify and evaluate how to optimize vegetation NPP
according to factors that can improve environmental quality of the area.

5. Conclusions
Through the analysis of the annual vegetation NPP and its influencing factors in the

Shendong mining area from 2000 to 2019, the following conclusions can be drawn.
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(1) From 2000 to 2019, the overall condition of the net primary productivity of
vegetation in the study area showed a fluctuating upward trend. The multi-year average
was 44.51g C/m-2 a-1, and the trend rate was 1.06/a. The multi-year average trough year
appeared in 2011, while the peak year appeared in 2018. Spatially, there is an increasing
distribution from north to south. The variation trend has a large spatial heterogeneity,
with the area with an increasing trend of vegetation NPP accounting for 21.54%, mainly
distributed in Dongsheng District, Kangbashi District and the bordering areas of
Yijinhuoluo Banner; other areas showed a decreasing trend, the area of which accounted
for 78.46%.

(2) The change trend for vegetation NPP in the direct affected area and natural
growth area over the years is basically consistent with the change in the overall
vegetation NPP. Before 2009, the vegetation NPP in the area directly affected by coal
mining was mostly smaller than that in the natural restoration area. After 2009, the
vegetation NPP in the area directly affected by coal mining was mostly larger than that
in the natural restoration area. This is related to the local mining situation and ecological
restoration measures.

(3) There are obvious spatial differences in the response relationship between NPP
and each factor in the study area. The correlation between the two factors and vegetation
NPP is both positive and negative as a whole. Among them, the precipitation is mainly
positive, and the temperature is negative. The correlation between vegetation NPP and
temperature in the study area was weaker than that of precipitation.

(4) The overall influence of human activities on npp in the study area showed an
increasing trend, with a tendency rate of 0.53/a. There are differences in the performance
of human activity intensity in different years during the study period. Since 2011, the
impact of human activities on NPP in the study area has been relatively strong. The
overall impact of human activities on the net primary productivity of vegetation in the
study area showed a decreasing distribution trend toward the central and northeastern
regions.

(5) NPP changes in the study area are affected by both climate change and human
activities. Human activities have a more significant contribution to the change in
vegetation NPP than climate. The explanatory power of the influencing factors for the
change in vegetation cover is ranked as follows: human activity > air temperature >
precipitation.

In general, although the vegetation in the study area has been improved in the past
20 years, considering that the influence of regional climate conditions on vegetation
growth is weak, it is necessary to strengthen the protection and restoration of the
vegetation in the study area in order to ensure the stability of the ecological environment
in the area in the future. It is suggested that the study area should improve its ecological
construction in the future. Plants should be selected that can simultaneously tolerate
stress from specific metals, drought, and low nutrient levels. At the same time, the
mining environment management and supervision should be strengthened to ensure the
stable improvement of vegetation ecological management in the Shendong mining area.
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Abstract
While driving regional economic development, coal mining also causes environmental problems. Changes in land use are 
associated with mining impact vegetation’s net primary productivity (NPP). This, in turn, can impact vegetation’s carbon 
fixation capacity. Understanding how these impacts operate can inform vegetation restoration efforts in former mining 
areas and preserve ecological stability. In this paper, the NPP of the study area from 2000 to 2019 was retrieved based on 
the Carnegie–Ames–Stanford Approach (CASA) model, and the spatial and temporal distribution characteristics of NPP 
of the study area were discussed. Meanwhile, combined with the land-use data of the European Space Agency (ESA) in 
2000, 2010, and 2019, the impact of land-use changes on regional vegetation NPP was discussed from the perspective of 
landscape ecology. The results showed that the CASA model using inverted NPP data gave results that compared favorably 
with data measured in the field. The annual average vegetation NPP in the study area during the study period was 44.51 g 
C  m−2  a−1. NPP changes showed considerable spatial heterogeneity, but the same overall trends in fluctuation. The study 
area experienced a decline in both forested and grassland area from 2000 to 2010. The NPP of all four land types decreased. 
Forested and other land types increased from 2010 to 2019, and the NPP of all four categories increased. Land-use changes 
over the study period of two decades promoted NPP growth, contributing 44.66% and 93.9%, respectively. Except for the 
aggregation index, landscape pattern indices showed a positive correlation with NPP. NPP values in 2000, 2010, and 2019 all 
increased, showing the highest ranked principal components based on landscape indices. The NPP in the study area strongly 
depends on human activities. Maintaining the current vegetation status would increase NPP in the study area and enhance 
the vegetation’s carbon fixation capacity.

Keywords NPP · CASA · Shendong mine area · Land use · Landscape pattern index

Introduction

With the development of modern society, global land-use 
and cover change (LUCC) approaches have documented 
extensive degradation of the environment. China is a devel-
oping country, which is economically dependent on coal 

production and consumption. With the rapid development of 
the economy, coal production has caused significant changes 
in land use (Xu et al. 2019). Especially in arid areas, coal 
production has impacted regional biodiversity, soil, and 
other ecosystems, as reflected in the LUCC (Vadrevu et al. 
2015).

The Inner Mongolia Autonomous Region is a key area 
for China’s coal mining strategy (Hu et al. 2018). This area 
hosts two large national coal mines, referred to as “Meng-
dong” and “Mengxi.” The Mengxi mining area is located in 
and around Ordos City, Inner Mongolia, and includes the 
Shendong mining area (Ordos). With its simple geological 
structure, Shendong consists of thick coal seams, which 
are suitable for large-scale subsurface mining, but the mine 
structures rest beneath an ecologically fragile area, subject 
to subsidence, collapse, and other mass wasting processes. 
Mining activity both provides economic benefits and has 
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negative consequences for the surface environment (Li et al. 
2009). The major LUCC changes reflect mines’ subsidence. 
Over time, subsidence has also caused habitat fragmenta-
tion and other ecosystem disruptions (Xiao et al. 2010; Li 
et al. 2011).

In recent years, Chinese governmental policies have 
begun to promote environmental management and eco-
logical restoration (Yu 2013). Mining area restoration has 
become a priority. Vegetation represents a key factor in the 
restoration of natural ecological processes (Ge et al. 2021). 
Restoration efforts often use net vegetation productivity 
(net primary production, NPP) as an indicator of ecosys-
tem health. NPP also functions within the global carbon 
cycle to convert  CO2 into biomass and soil. In mining areas, 
changes in vegetation NPP can demonstrate the efficacy of 
restoration efforts and the carbon fixation capacity of plant 
communities that experience land-use changes (Wang et al. 
2009). Vegetation NPP provides quantitative constraints on 
restoration and environmental management goals for mining 
areas (Zhang et al. 2020). The CASA model estimates NPP 
according to photosynthetic processes and light-energy uti-
lization, as derived from the current understanding of plant 
physiology (Fyllas et al. 2017). The CASA model requires 
fewer input parameters than other models, so it avoids the 
error caused by artificial simplification or estimation due 
to the lack of parameters. Many researchers use CASA to 
assess the dynamics and spatio-temporal variability in NPP 
at both the global and regional scales (Potter et al. 1993). 
This is one of the most common NPP models in the world.

The Shendong mine mining area is one of China’s main 
coal-generating regions, and is studied by some scholars, 
looking at the ecological environment. However, as environ-
mental governance of the mines gradually strengthens, the 
lack of research on vegetation, especially using CASA model 
to look at NPP inversion in the area, has become apparent. 
This research used the CASA model to simulate the spa-
tial and temporal dynamics of vegetation NPP from 2000 to 
2019 in the Ordos/Shendong mining area of Inner Mongolia. 
The results indicate spatial and temporal patterns and con-
straints on vegetation productivity, given land-use changes 
during the study period. It is expected to provide reference 
for the optimization of land-use structure, improvement of 
vegetation carbon sequestration capacity, and sustainable 
scientific development in the same type of well mining area.

Materials and methods

Study area

The study area is located in the broad northward arc 
of the Huang He River, in the zone between the Ordos 
Plateau and the northern edge of the northern Shanxi 

Plateau. To the north lies a transition zone abutting the 
Maousu Desert and to the south lies an eastern section 
of the northern edge of the Loess Plateau in northern 
Shanxi. As a typical hill and gully terrain, most of the 
area consists of sand dunes and other arid climate land-
forms. The terrain gradually increases in elevation from 
the southeast to northwest with a series of higher eleva-
tion drainage divides roughly occurring in the middle of 
the study area. Elevations range from 1200 to 1400 m. 
The climate is categorized as a middle-temperate conti-
nental climate. The winter is long and cold and summer 
is hot and short. Temperatures change sharply in spring 
and autumn. The relatively low annual rainfall is typi-
cally discretely concentrated, and the annual rainy season 
greatly varies. The rain depends on seasonal winds from 
the south in the summer, from the east in late autumn, 
and from the northwest in early spring. The soil texture 
is sandy or sandy soil, with a coarse mechanical compo-
sition and loose soil quality. The vegetation in this area 
belongs to arid and semi-arid steppe vegetation, the veg-
etation coverage is low, and artificial vegetation accounts 
for a large proportion. The research area includes 87 coal 
mines, such as the Liuta coal mine and Shangwan coal 
mine (Fig. 1).

Data sources

Remote sensing data

This study used NDVI (MOD13Q1, 250 m, 16d) and 
NPP data (MOD17A3, 1 km, 1a), downloaded from U.S. 
National Aeronautics and Space Administration (NASA) 
websites. The MODIS Reprojection Tool was used to 
convert (Geo TIFF) and reproject (WGS84/Albers Equal 
Area Conic) the two datasets (Zhao et al. 2005). Monthly 
NDVI datasets for the study period were integrated with 
annual NPP data using batch methods to obtain MODIS 
NPP and NDVI time series covering the study area for 
the duration of the study period (2000–2019).

Measured NPP data

Due to the challenges and limitations of measuring NPP 
in the field, biomass conversion NPP data are often used 
instead of field NPP data. Field data, however, can effec-
tively validate models. From July to August 2021, 19 plots 
were uniformly selected in the well-mining-concentrated 
areas in the study area. Through field observations of the 
19 plots, the biomass measurement was carried out in the 
areas with intact community structure and consistent habitat 
conditions. The plots measured 25 × 25 m. Within these, 
three 1 × 1 m plots of grassland along the greater plot’s 
diagonal were sampled for biomass. Biomass was collected, 
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immediately weighed, labeled, and transported back to the 
laboratory for analysis. In the lab, samples were dried at 
75 °C to obtain biomass dry-weight data. The NPP was 
estimated from each sample square as the proportions of 
above-ground biomass relative to below-ground biomass, 
assuming a NPP conversion coefficient of 0.475 (Fyllas 
et al. 2017). The trees found in the study area include sand 
willow and poplars. We counted the number of trees in 
each plot and estimated the size of each individual from its 
diameter at 1.3 m above the ground. The biomass and cor-
responding NPP of the forested land were estimated accord-
ing to the algorithm proposed by Fyllas et al. (2017). This 
rate, combined with forest cover, was integrated into areal 
estimates of total NPP per sample plot.

Meteorological data

Meteorological data were obtained from the China Meteoro-
logical Science Data Sharing Service Network (http:// cdc. cma. 
gov. cn). Data from six standard meteorological stations within 
the study area and its surroundings were combined with other 
2000–2019 meteorological data. Data were then parsed into a 
grid to match the projection for the study area and resolution of 
NPP data.

Land‑use data

Land vegetation cover data were obtained at 300 m resolu-
tion for 2000, 2010, and 2019 from ESA (http:// maps. elie. 

Fig. 1  Location of the study 
area, Inner Mongolia, China

http://cdc.cma.gov.cn
http://cdc.cma.gov.cn
http://maps.elie.ucl.ac.Thebe/CCI/viewer/
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ucl. ac. Thebe/ CCI/ viewer/). These were resampled at 250 m 
and converted to NC data using the QGIS software. The 
CCI-LC2000 data were converted to a standard projection 
and trimmed with vector boundaries. Due to the low resolu-
tion of the land-use data and the limited green space in the 
study area, the analysis considered only the main farmland 
vegetation types according to UN-LCCS, grassland, forested 
land, and other types (Guang and Bao 2019).

Human activity‑related data

Administrative division data came from the Inner Mongolia 
Autonomous Region Territorial Space Planning Institute. 
Distribution maps of subsurface mines came from the Inner 
Mongolia Geological Survey Planning Institute.

Methods

Carnegie–Ames–Stanford Approach (CASA)
The CASA is a light-energy utilization model, proposed by 
Potter in 1993. This CASA is a mechanistic model that esti-
mates vegetation NPP based on the vegetation’s physiologi-
cal processes. The meteorological data input to the model 
include solar radiation, temperature, and precipitation. The 
input remote sensing data include the vegetation index and 
empirical data, such as maximum light-energy utilization. 
The model uses these to estimate the maximum primary pro-
ductivity of vegetation. As it can use satellite remote sensing 
technology, the CASA model is widely used to estimate NPP 
in terrestrial ecosystems and in global carbon cycle research. 
The present study utilized a modified CASA model (Zhu 
et al. 2005a, b). The specific NPP formula was:

where APAR(x, t) represents the effective photosynthetic 
radiation absorbed in pixel x during month t. The term �(x, t) 
represents the actual optical energy utilization rate of pixel 
x during month t.

The formula used to calculate photosynthetically active 
radiation was as follows:

where SOL(x, t) represents the total solar radiation (MJ/m2) 
of pixel x during month t. The term FPAR(x, t) represents 
the vegetation’s absorption ratio of photosynthetically active 
radiation and the constant 0.5 indicates the proportion of 
effective solar radiation to total solar radiation.

The actual light-energy utilization rate was calculated as:

(1)NPP(x, t) = APAR(x, t) × �(x, t)

(2)APAR(x, t) = SOL(x, t) × FPAR(x, t) × 0.5

where f1(x, t) and f2(x, t) represent the effect of high and low 
temperatures on the light-energy conversion rate. The term 
W(x, t) indicates the influence of water conditions on the 
light-energy conversion rate and εmax represents the maxi-
mum light-energy utilization of vegetation in the ideal state.

Analysis of NPP’s spatial and temporal characteristics

The Theil-Sen Median is a robust, non-parametric statistic. 
Computationally efficient and insensitive to measurement error 
and outlier data, the statistic is often used in trend analyses of 
long-term data series (Zhang et al. 2021). The method does 
not assume that the data follow a certain distribution, and thus 
minimizes error. The formula for trend analysis is as follows:

While there is currently no standard method of parsing 
the slope (Zhuang et al. 2009), we sub-divided NPP changes 
into five grades: significant growth (slope > 5), mild growth 
(1 > slope < 5), stable change (− 1 < slope < 1), mild reduction 
(− 1 > slope <  − 5), and significant reduction (slope <  − 5).

The Mann–Kendall is a non-parametric statistical test 
(M–K) that does not require data to be normally distributed or 
follow a linear trend in order to function properly, and is not 
affected by missing values or outliers. The M–K test is widely 
used to determine trend significance in long-term data series. 
Here, it was used to determine the significance of vegetation 
NPP trends. The test statistic S is calculated as follows:

where the term “sgn” represents a symbolic function, cal-
culated as:

The test statistic Z was used for the trend test as follows:

The Var function was calculated as:

(3)�(x, t) = f1(x, t) × f2(x, t) ×W(x, t) × �max

(4)slope = median

(
NPPj − NPPi

j − i

)
, 2000 ≤ i < j ≤ 2019

(5)S =
∑n−1

j=1

∑n

i=j+1
sgn

(
NPPj − NPPi

)

(6)sgn
�
NPPj − NPPi

�
=

⎧
⎪⎨⎪⎩

1NPPj − NPPi > 0

0NPPj − NPPi = 0

−1NPPj − NPPi < 0

(7)Z =

⎧
⎪⎨⎪⎩

s√
Var(s)

S > 0

0 S = 0
s+1√
Var(s)

S < 0

(8)Var(s) =
n(n − 1)(2n + 5)
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where n is the amount of data in the sequence.
For a given confidence interval (significance level) α, 

absolute values of Z equal to or exceeding 1.65, 1.96, and 
2.58 give respective significance levels of 90%, 95%, and 
99%. If | Z |≥ Z1-α/2, the assumption of an upward or down-
ward trend cannot be rejected (the null hypothesis is not 
obtained). Positive values indicate an upward trend, and 
negative values indicate a downward trend. According to 
the t-test cutoff value, when | Z |> 1.96, the increasing or 
decreasing trend is significant at the 0.05 level. When | Z 
|> 2.58, the increasing or decreasing trend is significant at 
the 0.01 level.

Effects of landscape changes on NPP

The pattern of changes in the research area landscape over 
the last 19 years was analyzed by constructing a land-use 
transfer matrix covering the Shendong mining area from 
2000 to 2019. The effect of changes in land use on regional 
NPP can be expressed as the contribution of land-use change 
to changes in total NPP (Roc):

In Formula (9), S and NPP indicate the land-use area and 
NPP changes during the period, while S1 and NPP1 indicate 
initial land-use area and NPP values, respectively.

An analysis of the changes in landscape patterns was 
based on the previous landscape pattern index (Liu et al. 
2021; Hou et al. 2020). In this paper, five indices were cal-
culated from landscape data, including Shannon’s Diversity 
Index (SHDI), which represents type diversity, Patch density 
(PD) and fractal dimension index (FRAC), which represent 
spatial morphology, and Splitting Index (SPLIT) and aggre-
gation Index (AI), which represent spatial relationships. The 
landscape index was calculated in Fragstats 4.2 using the 
mobile pane method (500 m). Landscape indices and NPP 
values for each year were then extracted using an ArcGIS 
grid method. The correlation coefficients were calculated 
in SPSS. Variations in the five landscape pattern indices 
were further analyzed using principal component analysis 
to determine the sources of variation in NPP.

Results

Model validation

The measured NPP data were compared to the CASA 
model results based on spatial position to verify the model 
accuracy. Figure 2 shows the results of the correlation 
analysis of the measured data and the simulated NPP. The 

(9)

Roc =
||ΔS × NPP1

||
||ΔNPP × S1

|| + ||ΔS × NPP1
|| + |ΔNPP × ΔS| × 100%

R2 value of 0.55 (P < 0.01) indicates that the measured 
NPP values generally agree with the simulated values.

Due to the non-overlap of the time periods covered by 
the model and field (measured) data, the finished Modis 
NPP product data were used to further verify the model 
results. This method used 55 randomly selected sample 
points in the study area for fitting analysis (Fig. 3). The R2 
of 0.66 (P < 0.01) between the Modis NPP product value 
and the simulated value further indicates that the simula-
tion value generally resembles the finished product value, 
and that the CASA model provides reasonable estimates 
of NPP.

NPP spatio‑temporal change characteristics 
and contribution analysis of land‑use type

As shown in Fig. 4, vegetation NPP in the study area gener-
ally increased between 2000 and 2019, with more gradual 
increases from 2000 to 2011 and more rapid increases from 
2011 to 2019. The annual average NPP throughout the study 
period was 44.51 g·C·m−2·a−1. The propensity rate was 1.06 

Fig. 2  Comparison of CASA simulated and observed NPP

Fig. 3  Comparison of CASA simulated and Modis NPP
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 a−1, with a multi-annual minimum in 2011 and maximum 
in 2018 (P < 0.01). These values differed by 37.04 g·C 
·m−2·a−1.

From 2000 to 2010, the NPP stability ranged from 
90.84 to 8.34%, with the highest values occurring in the 
Dongsheng District of the study area from 2010 to 2019. The 
mining area showed the greatest interannual variability in an 
NPP of about 70.91%, followed by 26.13% (Figs. 4 and 5).

As shown in Fig. 6, average annual NPP in the study area 
generally increased but could be divided into five catego-
ries by natural fracture methods. This approach highlights 
regional average annual NPP values of 40 to 60 g·C·m−2·a−1. 
These obtain the largest proportion (57.96%) of the study 

area, followed by the 20 to 40 g·C·m−2·a−1 tier, which covers 
34.12% of the study area. The NPP range of > 80 g·C·m−2·a−1 
was obtained in only 0.28% of the study area.

Changes in NPP from 2000 to 2019 exhibit considerable 
spatial heterogeneity. The area experiencing increased NPP 
represented 21.54% of the study areas and mainly occurred 
around Dongsheng, Kangbashi, and Inkinhoro Banner. Areas 
experiencing decreasing NPP values accounted for 78.46% 
of the study area (Fig. 7). According to the M-K significance 
test results (Fig. 8), areas experiencing significant increases 
in NPP accounted for 1.69%, 1.33%, 18.42%, 0.19%, 0.01%, 
and 0.12% of the total area. These values generally com-
ported with trends in NPP variation in the study area.

Fig. 4  NPP variation in the study area from 2000 to 2019

Fig. 5  Spatial distribution of NPP variation in the study area from 2000 to 2010 (left) and 2010 to 2019 (right)
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The third-phase land-use data indicate the total 
NPP for the study area in 2000, 2010, and 2019 of 
5475.70 kg·C, 4717.96 kg·C, and 7211.90 kg·C, respec-
tively. These demonstrate the overall trend of decline 
and then increase. Among these values, cultivated land 
showed the largest contribution to total NPP, account-
ing for about 59.72% of the total NPP. Grassland made 
the second largest contribution to total NPP (39.25%) 
followed by forested land (1%), and other land (0.03%) 
(Fig. 9).

Changes in landscape type in the study area

The landscape types in the study area primarily consist of 
cultivated land and grassland, with the former concentrated 
in the west and south at low altitudes and the latter predomi-
nating in the northeast and at higher altitudes (Fig. 10).

From 2000 to 2019, the area of cultivated land declined 
by about 433.49  km2

, amounting to respective rates of 
change of − 30.29% and − 0.48%. Forested land expanded 
by about 12.65  km2. While this represents a small area, 
given the general paucity of forested land to begin with, the 
change amounted to 3.5 and 133 times that observed in the 
respective base years. Grassland initially expanded and then 
declined but showed an overall expansion of about 478.33 
 km2. This provides a rate of change of 8.4% and 0.9% for 
the respective base years. The “other” land category showed 
a slight increase in area and relatively high rates of change 
of 30.73% and 21.66% for the two base periods. The culti-
vated land area has continuously declined over the last two 
decades due to conversion to grassland (342.38  km2) and 
land types categorized as “other” (10.04  km2). The increase 
in forested land primarily derived from the conversion of 
cultivated land (5.27  km2) and meadows (6.73  km2). The 
increase in grassland area also derived from the conversion 
of cultivated land (24.31  km2) (Table 1).

The landscape pattern index of the study area showed lit-
tle change from 2000 to 2019. A mean PD of 0.15 indicates 
increasing fragmentation and smaller patches. The relatively 
low estimated FRAC values indicate the stable boundaries 
of land patches. The estimated SPLIT values indicate the 

Fig. 6  Spatial distribution of tiered 20-year average NPP values in the 
study area

Fig. 7  NPP variation in the study area from 2000 to 2019

Fig. 8  Significance of interannual variation in NPP in the study area 
from 2000 to 2019
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increasing uniformity of different land-use types. Table 2 
shows average SHDI years of 1.14, overall increasing plaque 
type, and an average AI of 75.44. The decrease in AI indi-
cates the less centralized distribution of land types. The five 

parameters generally indicated increased landscape diversity 
and less spatial concentration or uniformity in land-use types. 
The study area shows an increased degree of landscape frag-
mentation but greater temporal stability of land types.

Fig. 9  Total NPP variations in 
the study area in 2000, 2005, 
2010, and 2015

Fig. 10  Land-use changes in 2000, 2010, and 2019
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Effects of land‑use changes on NPP

Effects of land‑use changes on NPP

As shown in Fig. 11, both forested and grassland areas 
increased between 2000 and 2010. Cultivated land and other 
land uses decreased. All four land types showed a declin-
ing NPP. Between 2010 and 2019, land-use area increased, 
while the area of cultivated land and grassland decreased. 
NPP increased in all four land categories.

Table 3 lists the contribution from changes in land-type 
area to changes in NPP. Changes in land use for each decade 
promoted NPP by 757.73 kg C and 2493.94 kg C, or showed 
contribution rates of 44.66% and 93.9% for the respective 
2000–2010 and 2010–2019 timeframes.

Correlation between landscape indices and NPP

The landscape index and NPP distribution maps were divided 
into continuous 1 × 1 km grids, which were then analyzed 
for correlations between landscape indices and NPP. Invalid 
and irrelevant values were excluded. From 2000 to 2019, AI 
showed an inverse correlation with NPP, while all other land-
scape pattern indices showed positive correlation with NPP 
(Fig. 12). Principal component analysis of the five landscape 
pattern index results for three timeframes (2000, 2010, 2019) 
identified the top ranked components, representing 92.5%, 
73.5%, and 60.29% of the variance, respectively. The highest 
ranked component was significantly positively associated with 
NPP (significance level of 0.01). The highest ranked principal 
component for each year was linearly matched to the NPP val-
ues (Fig. 13) to show that NPP values in all 3 years increased 
with the first principal component.

Discussion

Discussion of NPP model results

This research used field, product, and model data to estimate 
and validate NPP in the study area. Sources of error, such as 
human errors in field measurements or those arising from 
imprecision in the finished product data, warranted further 
analysis and validation of CASA NPP results. The earlier 
results described by Zhu et al. (2007) for this region served 
as the basis for comparison. The results described here also 
generally resembled those published by Mu et al. (2013), 
who performed an inversion of CASA results from the Inner 
Mongolia Autonomous Region (Zhu et al. 2005a, b). The 
results shown here were generally lower than those reported 
by Xie et al. (2015). The differences in the BLOME-BGC 

Table 1  Land-use transfer matrix for the study area from 2000 to 
2019 (Ha)*

*Given limited area of forested land, values are given in hectares (Ha)

Initial land type Grassland Cropland Forested Others

Grassland 593,172.55 73,933.49 0.07 24,313.06
Cropland 34,238.32 62,972.36 0.07 1003.81
Forested 673.05 527.36 1.96 64.85
Others 15,501.44 4130.89 11,169.59

Table 2  Landscape indices for the study area in 2000, 2010, and 2019

Year PD FRAC SPLIT SHDI AI

2000 0.17 1.51 3.73 0.73 82.51
2010 0.55 1.53 17.05 1.34 72.06
2019 0.57 1.53 18.17 1.37 71.75

Fig. 11  Changes in NPP of different land-use types
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model results arose from the incompatible time series and 
spatial scales, as well as differences in the used indices. The 
basic data interpolation methods and uncertainties in the 
study area also differed between the two models. Overall, the 
NPP results obtained in the study area using the model meth-
ods resembled field data, finished product data, and previous 
research data. In accordance with previous research findings, 
we found a CASA model that was suitable for the vegetation 
NPP inversion in this study area. However, the estimation of 
NPP from remote sensing images and other spatial data faces 
considerable limitations, due to the low spatial and tempo-
ral resolution of data and scarce meteorological stations. 
Given these deficiencies, we limit further interpretations to 
the present objectives of assessing the impacts of changing 
land uses in the study area over the last 20 years.

Effects of land‑use changes on regional NPP

From 2000 to 2019, total NPP first decreased and then 
increased, perhaps due to changes in regional land-use 
types. As a reflection of land-use changes, variations in 
land type cause different NPP changes in different periods. 
From 2000 to 2010, total NPP decreased, likely due to the 
continuous reductions in cultivated land and others land 
caused by the promotion of the coal mining industry, poor 

climate conditions, and other factors. The weak growth in 
forest and grassland during this time indicates the significant 
impact of forest expansion. Between 2010 and 2019, total 
NPP increased. During this time, both the grassland and 
cultivated land areas declined in while forested and other 
land areas rapidly expanded. The likely influence of urban 
expansion and the ecological civilization construction policy 
in the region led to ecological protection, promoted vegeta-
tion growth, and increased crop yields among restored areas. 
Climate conditions also supported higher productivity in this 
period, and these appear to make the predominant contribu-
tion to increase in NPP. The two decades of land-use changes 
contributed to NPP changes. The continuous growth in total 
NPP reflects the stronger impact of the NPP growth area 
compared to that experiencing NPP reductions.

Relationship between landscape indices 
and regional NPP

In addition to AI and other indices, new land-use types 
influence NPP by reducing more contiguous areas to form 
smaller, more dispersed patches. The increase in fragmen-
tation increased variations in landscape type and stability. 
Analysis indicates that the new landscape types can fix more 
carbon than the original landscape type. However, the loss of 
a centralized distribution of some landscape types can also 
reduce total NPP. Principal component analysis of varia-
tions in the five landscape indices over 3 years of NPP data 
found that the increased regional vegetation type, as well as 
the enhanced cultivation of cultivated land, and forest and 
grassland land types can improve the regional carbon fixa-
tion capacity. The results further indicate that the loss of the 
original patch type will gradually form stable bodies within 
the landscape pattern in the mining area. The highest ranked 
component loading value reached 92.5%. Although the 
remaining 2 years did not meet the PCA extraction require-
ments, they exhibited a weak, linear relationship between the 
landscape pattern index and NPP. The weakness of the rela-
tion may relate to the low spatial resolution of the land-use 
data. Errors associated with landscape indices arise from the 
variable data accuracy and processing methods, but indices 
still appear to capture changes in landscape pattern (Kang 
et al. 2014).

Conclusions

From 2000 to 2019, the overall status of vegetation net pri-
mary productivity in Shendong mining area showed a fluc-
tuating upward trend, and changes in these trends had a large 
spatial heterogeneity. Among them, vegetation NPP showed 
an increasing trend and was mainly distributed in Dongsheng 

Table 3  Contribution of land-use changes to total NPP variation

Period Influence by mass (kg C) Contribu-
tion rate 
(Roc)

2000–2010 757.73 44.66
2010–2019 2493.94 93.9

Fig. 12  Correlation between NPP and landscape parameters
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District, Kangbashi District, and Ejin Horo Banner. The bor-
dering areas of Ejin Horo Banner and other areas show a 
decreasing trend. Among them, from 2000 to 2010, the areas 
with a stable NPP were relatively high, and the remaining 
areas showed mild growth; from 2010 to 2019, the area of 
areas with a slight growth in NPP changes accounted for the 
largest proportion, followed by areas with obvious growth.

From 2000 to 2010, both forest and grassland areas 
increased, cultivated land and other land uses decreased, and 
the NPP of the four types of land use decreased. From 2010 
to 2019, the area of forest land and other land uses increased, 
the area of cultivated land and grassland decreased, and 
the NPP of all four types of land use increased. The land-
use changes in the two periods played a role in promoting 
the growth of NPP, with contribution rates of 44.66% and 
93.9%, respectively. In 2000, 2010, and 2019, the total NPP 
in the study area showed a trend of first decreasing and then 
increasing. Among these, cultivated land contributed the 
most to the total NPP, followed by grassland, forest land, 
and other land.

Among the landscape vegetation indices used during the 
study period, AI was negatively correlated with NPP; the 
other four landscape pattern indices were positively corre-
lated with NPP. In 2000, 2010, and 2019, the first principal 
component was significantly positively correlated with NPP. 
The NPP in the study area is strongly affected by human 
activities. In the later period, to maintain the current veg-
etation status, improving the landscape type and type con-
centration in the study area can be beneficial to the growth 
in NPP. The carbon sequestration capacity of vegetation 
could be improved by optimizing the landscape pattern and 
through the centralized and contiguous planting of vegeta-
tion species in the future.

Numerous studies on ecosystems found that vegetation 
NPP depends on both natural and human factors (Vahtmäe 
et al. 2021; Xie et al. 2022). Landscape changes in the study 
area may reflect local natural conditions and human activi-
ties, such as the ecological restoration of mining areas. Cli-
mate change influences vegetation growth trends and influ-
ences carbon fixation capacity. Coal mining in the study 

Fig. 13  Relationship between NPP and highest ranked component
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area led to changes in terrain and hydrological conditions, 
especially on the surface, which can, in turn, cause changes 
in landscape types. Ordos is under the construction of eco-
logical civilization environment (sustainable policies) in 
recent years (Meng et al. 2013). The implemented policies 
include returning farmland to grass and forest land. Longer-
term and previous afforestation also had a further impact on 
the distribution and growth of local landscape types. In the 
future, the influence of NPP in the study area can be further 
studied in combination with other influencing factors.
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